
Institute of Architecture of Application Systems

Pattern-based Rewrite and Refinement
of Architectures Using Graph Theory

Jasmin Guth and Frank Leymann
{guth, leymann}@iaas.uni-stuttgart.de

Summer SoC 2019, Crete, Greece

M
ic

ha
el

 W
ur

st
er

Introduction & Motivation

© Jasmin Guth, IAAS 2SummerSoC 2019

A B

122

and offerings offer similar functionality to group virtual servers into groups that
restrict access from and to outside servers.

3.6.2 Message-oriented Middleware

Asynchronous message-based communication is provided while hiding complexi-
ty resulting from addressing, routing, or data formats from communication part-
ners to make interaction robust and flexible.

How can communication partners exchange information asyn-
chronously with a communication partner?

Context	
The application components of a distributed application (139) are hosted on

multiple cloud resources and have to exchange information with each other. Often,
the integration with other cloud applications and non-cloud applications is also re-
quired. These different applications possibly use different programming lan-
guages, data formats, and execution environments (94). When one application di-
rectly exchanges information with another application, the address and data format
of the target application has to be respected. Even within one homogeneous dis-
tributed application (139), the communicating application components must be
available at the time when the information shall be exchanged. These dependen-
cies can significantly reduce the availability of the overall application as the fail-
ure of one application component would directly affect all components communi-
cations with it. The resulting dependency between communication partners
regarding their location, availability, and data format is called tight coupling. It al-
so increases the complexity of the management of the overall application or the
landscape of applications, because changes to one communication partner, for ex-
ample, regarding the format of exchanged data or the address used, also affect the
other communication partner directly. This should be avoided to increase the
availability of the overall application and ease continuous alterations by making
communication flexible.

Solution	
Communication partners exchange information asynchronously using messages

handled by a message-oriented middleware. For this purpose, a message-oriented
middleware provides different communication functionality:

A message queue also called message channel by Hohpe and Woolf [1] stores
messages until they are retrieved from a receiver. Multiple receivers can send
messages to a queue and retrieve them from it. This behavior enables the scalabil-
ity of cloud applications using messaging. In this book, we will mostly use mes-
sage queues in the covered patterns.

C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud Computing Patterns: Fundamentals to Design, Build, and Manage Cloud Applications. Springer, 2014.

124

cation components act as independently operating filters that are interconnected
through pipes, i.e., the message queues provided by the message-oriented middle-
ware. Hohpe and Woolf [1] describe the behavior of these pipes and how they
may be connected. Regarding the filters, i.e., the application components, Hohpe
and Woolf also described how to interface with the messaging systems in the
adapter pattern.

The more intermediaries a message passes through while traversing a message-
oriented middleware, the more likely it becomes that an intermediary fails. To ad-
dress this issue, messages are often stored in persistent storage by the message-
oriented middleware from where they can be recovered in case of failures. This
approach is described by the guaranteed delivery pattern introduced by Hohpe and
Woolf [1].

Variations	
A message-oriented middleware is used if small amounts of data need to be ex-

changed frequently, as messages are often restricted in size so they can be handled
more easily. If larger amounts of data have to be exchanged, messages may either
contain a pointer to this data that is actually stored at a different location, for ex-
ample, a storage offering (see Section 3.5) or the data may be split up among mul-
tiple messages. Hohpe and Wolf [1] cover patterns for this exchange of large data
elements: the file transfer pattern describes how data may be exported from one
application and imported by a different one. A message sequence may be used to
split large data elements among a set of messages.

Related	Patterns	
Figure 37 shows how the other messaging patterns of this section are related to

the message oriented middleware:
� At-least-once delivery (128): it is ensured that messages traversing the mes-

sage-oriented middleware are delivered once or multiple times. This is
achieved through acknowledgements for message receives. If an acknowl-
edgement is not received, a message is retransmitted. �

� Exactly-once delivery (126): messages traversing the message-oriented mid-
dleware are delivered once and only once to the receiver. This involves relia-
bly storage of messages in the message-oriented middleware and, often,
transactional message exchange during its traversal of the message-oriented
middleware.�

� Transaction-based delivery (130): the transactional behavior used to assure
at-least-once delivery of messages can be extended to the client receiving the
message. This assures not only that messages are delivered exactly once, but
also that they are received exactly once.

� Timeout-based delivery (132): the acknowledged receive of messages can be
extended to the client receiving the message, to assure not only that messages
are delivered at-least-once, but also successfully received by message receiv-
ers. �

� �

125

Side Note: the patterns at-least-once delivery (128) and exactly-
once delivery (126) describe assurances of the message-oriented
middleware regarding the end-to-end message delivery from
sender to receiver.
The patterns transaction-based delivery (130) and timeout-based
delivery (132) describe the behavior of the message-oriented
middleware when interacting directly with the receiver of
messages.

In addition to these communication patterns, there are several related patterns that
should be considered to be implemented in applications and their components in-
teracting with a message-oriented middleware:
� Transaction-based processor (179): if the message-oriented middleware uses

transactions to assure that messages are delivered exactly-once (126), the
transaction can be extended to include the message processing performed by
the receiver as well. Therefore, the transaction-based processor enables the
application to assure that messages are processed exactly-once. A similar be-
havior is also described by Hohpe and Woolf’s [1] transactional client pat-
tern. The transaction-based processor pattern summarizes this behavior and
extends it to the transactional interaction with a storage offering.

� Timeout-based message processor (182): if the message-oriented middleware
assures at-least-once delivery (128) by acknowledging message receives, the
client can extend the acknowledgment to the successful message processing.
Therefore, the timeout-based message processor enables an application to as-
sure that messages are processed at least once.

� Distributed application (139): applications that are comprised of multiple
loosely coupled (139) application component usually employ a message-
oriented middleware to exchange information between components. In this
scope, an idempotent processor (176) may be used to cope with duplicate
messages created by a message-oriented middleware assuring at-least-once
delivery.�

� Message mover component (201):� this component may be used to integrate
different message-oriented middleware instances offered by different cloud
providers or that are installed in on-premise datacenters.�

� Watchdog (230): a watchdog may be used to cope with failing resources, es-
pecially, in scope of environment-based availability (88). It uses message
queues to store information securely even in case of failures.�

� Batch processing component (165): message queues may be used to actively
delay messages. A batch processing component does so to process messages
only when conditions are feasible, for example, if cloud resource prices are
low or the overall application experiences a low utilization. �

Known	Uses	
Using messaging to integrate distributed applications is a common architectural

approach. Many additional messaging patterns have been identified by Hohpe and

Pattern-based Rewrite and Refinement of
Architectures Using Graph Theory

Application Example

M
ic

ha
el

 W
ur

st
er

Application Example – Input

© Jasmin Guth 4SummerSoC 2019

M1:
Message-
oriented

Middlewaren1 n2

!(#$) = '()*#+

	!(#-) = .*/0*/

12: 4:

M2:
Watchdog

Input

M
ic

ha
el

 W
ur

st
er

Application Example – M1: MOM – Check Requirements

© Jasmin Guth 5SummerSoC 2019

M1:
Message-
oriented

Middlewaren1 n2

!(#$) = '()*#+

	!(#-) = .*/0*/

12: 4:

M2:
Watchdog

Input

	56

M
ic

ha
el

 W
ur

st
er

Application Example – M1: MOM – Refine or Rewrite

© Jasmin Guth 6SummerSoC 2019

MOM.applyPattern(G0)

M1:
Message-
oriented

Middlewaren1 n2

!(#$) = '()*#+

	!(#-) = .*/0*/

12: 4:

M2:
Watchdog

Input

	56

n1 n3

!(#$) = '()*#+

	!(#-) = ./.

01:

n2

	!(#3) = 4*56*5

M
ic

ha
el

 W
ur

st
er

Application Example – M2: Watchdog – Check Requirements

© Jasmin Guth 7SummerSoC 2019

M1:
Message-
oriented

Middlewaren1 n2

!(#$) = '()*#+

	!(#-) = .*/0*/

12: 4:

M2:
Watchdog

Input

	56

n1 n3

!(#$) = '()*#+

	!(#-) = ./.

01:

n2

	!(#3) = 4*56*5
78

M
ic

ha
el

 W
ur

st
er

Application Example – M2: Watchdog – Refine or Rewrite

© Jasmin Guth 8SummerSoC 2019

Watchdog.applyPattern(G1)

n1 n3

!(#$) = '()*#+

	!(#-) = ./.

01:

n2

	!(#3) = 4*56*5

n4

	!(#7) = 89+:ℎ<=>

M1:
Message-
oriented

Middlewaren1 n2

!(#$) = '()*#+

	!(#-) = .*/0*/

12: 4:

M2:
Watchdog

Input

	56

n1 n3

!(#$) = '()*#+

	!(#-) = ./.

01:

n2

	!(#3) = 4*56*5
78

Pattern-based Rewrite and Refinement of
Architectures Using Graph Theory

Concept & Formalization

M
ic

ha
el

 W
ur

st
er

Concept: Pattern-based Rewrite and Refinement of Architectures

© Jasmin Guth SummerSoC 2019 10

Jasmin Guth and Frank Leymann

[lastname]@iaas.uni-stuttgart.de

Pattern-based Rewrite
and Refinement of

Architectures Using
Graph Theory

Jasmin Guth
Frank Leymann

Institute of Architecture of Application Systems

With the continuous growth of IT application systems, the complexity of architecture modeling and development
increases. Architectural patterns should support the modeling and development process. Due to their documenta-
tion as text documents, they cannot be applied to an architecture automatically: Patterns have to be read, under-
stood, adapted to the corresponding use case, and realized manually over and over again. Consequently, archi-
tecture modeling considering the variety of documented patterns becomes even more complex. To tackle these
issues, we introduce an approach for an automated application and realization of patterns in architectural graphs.

Abstract

Concept – Pattern-based Rewrite and Refinement of Architectures Using Graph Theory

Selected Related Work

Architectural Graphs Patterns, Pattern Languages & Solution Paths

We use architectural graphs to formalize an
application system’s architecture, whereby nodes
represent the components and edges represent the
connectors among the components of an architect-
ure [1]. Furthermore, each node is mapped to a
type, such as application, server, or virtual machine.

[1] Le Métayer, D.: Describing Software Architecture Styles Using Graph Grammars. IEEE Transactions on Software
Engineering, Volume 24 Issue 7, pp. 521-522 (July 1998)

[2] Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F., Hadjakos, A., Hentschel, F., and Schulze, H.:
Leveraging Pattern Application via Pattern Refinement. In: PURPLSOC 2015, pp. 38-61, epubli GmbH (June 2015)

[3] Zdun, U.: Systematic Pattern Selection Using Pattern Language Grammars and Design Space Analysis. Software:
Practice & Experience, Volume 37 Issue 9, pp. 983-1016 (July 2007)

Patterns describe proven solutions for recurring
problems in an abstract and human readable way. A
pattern language comprises a network connecting
related patterns. Each possible pattern path in this
network forms a solution path [2, 3]. Solution paths
define the application order of patterns in this work.

1. Select
Pattern of
Solution

Path

2. Check
Require-

ments

3.
Rewrite

or Refine

Pattern Language ! ∈ #

M1
M2

M5

M3
M4

M7

M6

Solution Path$ ∈ %(!)

Modified Architectural
Graph ()*(+)

In
put

M3 M4

M6

Solution Path

Architectural
Graph , ∈ -,
+ = (0+, 1+)

23

456

756

Required Fragment 23 ∈ 8

Components
9: ⊆ <

Connectors
=: ⊆ ℰ

Architectural Graph ?
M3

23

Required Fragment)*

⊲?

Architectural Graph ?
M3

456

Modification Fragment 45A

756

Selected Solution Path
$ = (B*,BC,BD)

)* ⊲ +

Pattern
E3 ∈ ℳ,

E3 = (23, 456, 756)

Modification Fragment 456 ∈ 8

Local Pattern Operator 756: 8 → 8

M
ic

ha
el

 W
ur

st
er

Concept: Pattern-based Rewrite and Refinement of Architectures

© Jasmin Guth SummerSoC 2019 11

Jasmin Guth and Frank Leymann

[lastname]@iaas.uni-stuttgart.de

Pattern-based Rewrite
and Refinement of

Architectures Using
Graph Theory

Jasmin Guth
Frank Leymann

Institute of Architecture of Application Systems

With the continuous growth of IT application systems, the complexity of architecture modeling and development
increases. Architectural patterns should support the modeling and development process. Due to their documenta-
tion as text documents, they cannot be applied to an architecture automatically: Patterns have to be read, under-
stood, adapted to the corresponding use case, and realized manually over and over again. Consequently, archi-
tecture modeling considering the variety of documented patterns becomes even more complex. To tackle these
issues, we introduce an approach for an automated application and realization of patterns in architectural graphs.

Abstract

Concept – Pattern-based Rewrite and Refinement of Architectures Using Graph Theory

Selected Related Work

Architectural Graphs Patterns, Pattern Languages & Solution Paths

We use architectural graphs to formalize an
application system’s architecture, whereby nodes
represent the components and edges represent the
connectors among the components of an architect-
ure [1]. Furthermore, each node is mapped to a
type, such as application, server, or virtual machine.

[1] Le Métayer, D.: Describing Software Architecture Styles Using Graph Grammars. IEEE Transactions on Software
Engineering, Volume 24 Issue 7, pp. 521-522 (July 1998)

[2] Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F., Hadjakos, A., Hentschel, F., and Schulze, H.:
Leveraging Pattern Application via Pattern Refinement. In: PURPLSOC 2015, pp. 38-61, epubli GmbH (June 2015)

[3] Zdun, U.: Systematic Pattern Selection Using Pattern Language Grammars and Design Space Analysis. Software:
Practice & Experience, Volume 37 Issue 9, pp. 983-1016 (July 2007)

Patterns describe proven solutions for recurring
problems in an abstract and human readable way. A
pattern language comprises a network connecting
related patterns. Each possible pattern path in this
network forms a solution path [2, 3]. Solution paths
define the application order of patterns in this work.

1. Select
Pattern of
Solution

Path

2. Check
Require-

ments

3.
Rewrite

or Refine

Pattern Language ! ∈ #

M1
M2

M5

M3
M4

M7

M6

Solution Path$ ∈ %(!)

Modified Architectural
Graph ()*(+)

In
put

M3 M4

M6

Solution Path

Architectural
Graph , ∈ -,
+ = (0+, 1+)

23

456

756

Required Fragment 23 ∈ 8

Components
9: ⊆ <

Connectors
=: ⊆ ℰ

Architectural Graph ?
M3

23

Required Fragment)*

⊲?

Architectural Graph ?
M3

456

Modification Fragment 45A

756

Selected Solution Path
$ = (B*,BC,BD)

)* ⊲ +

Pattern
E3 ∈ ℳ,

E3 = (23, 456, 756)

Modification Fragment 456 ∈ 8

Local Pattern Operator 756: 8 → 8

M
ic

ha
el

 W
ur

st
er

Concept: Pattern-based Rewrite and Refinement of Architectures

© Jasmin Guth SummerSoC 2019 12

Jasmin Guth and Frank Leymann

[lastname]@iaas.uni-stuttgart.de

Pattern-based Rewrite
and Refinement of

Architectures Using
Graph Theory

Jasmin Guth
Frank Leymann

Institute of Architecture of Application Systems

With the continuous growth of IT application systems, the complexity of architecture modeling and development
increases. Architectural patterns should support the modeling and development process. Due to their documenta-
tion as text documents, they cannot be applied to an architecture automatically: Patterns have to be read, under-
stood, adapted to the corresponding use case, and realized manually over and over again. Consequently, archi-
tecture modeling considering the variety of documented patterns becomes even more complex. To tackle these
issues, we introduce an approach for an automated application and realization of patterns in architectural graphs.

Abstract

Concept – Pattern-based Rewrite and Refinement of Architectures Using Graph Theory

Selected Related Work

Architectural Graphs Patterns, Pattern Languages & Solution Paths

We use architectural graphs to formalize an
application system’s architecture, whereby nodes
represent the components and edges represent the
connectors among the components of an architect-
ure [1]. Furthermore, each node is mapped to a
type, such as application, server, or virtual machine.

[1] Le Métayer, D.: Describing Software Architecture Styles Using Graph Grammars. IEEE Transactions on Software
Engineering, Volume 24 Issue 7, pp. 521-522 (July 1998)

[2] Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F., Hadjakos, A., Hentschel, F., and Schulze, H.:
Leveraging Pattern Application via Pattern Refinement. In: PURPLSOC 2015, pp. 38-61, epubli GmbH (June 2015)

[3] Zdun, U.: Systematic Pattern Selection Using Pattern Language Grammars and Design Space Analysis. Software:
Practice & Experience, Volume 37 Issue 9, pp. 983-1016 (July 2007)

Patterns describe proven solutions for recurring
problems in an abstract and human readable way. A
pattern language comprises a network connecting
related patterns. Each possible pattern path in this
network forms a solution path [2, 3]. Solution paths
define the application order of patterns in this work.

1. Select
Pattern of
Solution

Path

2. Check
Require-

ments

3.
Rewrite

or Refine

Pattern Language ! ∈ #

M1
M2

M5

M3
M4

M7

M6

Solution Path$ ∈ %(!)

Modified Architectural
Graph ()*(+)

In
put

M3 M4

M6

Solution Path

Architectural
Graph , ∈ -,
+ = (0+, 1+)

23

456

756

Required Fragment 23 ∈ 8

Components
9: ⊆ <

Connectors
=: ⊆ ℰ

Architectural Graph ?
M3

23

Required Fragment)*

⊲?

Architectural Graph ?
M3

456

Modification Fragment 45A

756

Selected Solution Path
$ = (B*,BC,BD)

)* ⊲ +

Pattern
E3 ∈ ℳ,

E3 = (23, 456, 756)

Modification Fragment 456 ∈ 8

Local Pattern Operator 756: 8 → 8

M
ic

ha
el

 W
ur

st
er

Concept: Pattern-based Rewrite and Refinement of Architectures

© Jasmin Guth SummerSoC 2019 13

Jasmin Guth and Frank Leymann

[lastname]@iaas.uni-stuttgart.de

Pattern-based Rewrite
and Refinement of

Architectures Using
Graph Theory

Jasmin Guth
Frank Leymann

Institute of Architecture of Application Systems

With the continuous growth of IT application systems, the complexity of architecture modeling and development
increases. Architectural patterns should support the modeling and development process. Due to their documenta-
tion as text documents, they cannot be applied to an architecture automatically: Patterns have to be read, under-
stood, adapted to the corresponding use case, and realized manually over and over again. Consequently, archi-
tecture modeling considering the variety of documented patterns becomes even more complex. To tackle these
issues, we introduce an approach for an automated application and realization of patterns in architectural graphs.

Abstract

Concept – Pattern-based Rewrite and Refinement of Architectures Using Graph Theory

Selected Related Work

Architectural Graphs Patterns, Pattern Languages & Solution Paths

We use architectural graphs to formalize an
application system’s architecture, whereby nodes
represent the components and edges represent the
connectors among the components of an architect-
ure [1]. Furthermore, each node is mapped to a
type, such as application, server, or virtual machine.

[1] Le Métayer, D.: Describing Software Architecture Styles Using Graph Grammars. IEEE Transactions on Software
Engineering, Volume 24 Issue 7, pp. 521-522 (July 1998)

[2] Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F., Hadjakos, A., Hentschel, F., and Schulze, H.:
Leveraging Pattern Application via Pattern Refinement. In: PURPLSOC 2015, pp. 38-61, epubli GmbH (June 2015)

[3] Zdun, U.: Systematic Pattern Selection Using Pattern Language Grammars and Design Space Analysis. Software:
Practice & Experience, Volume 37 Issue 9, pp. 983-1016 (July 2007)

Patterns describe proven solutions for recurring
problems in an abstract and human readable way. A
pattern language comprises a network connecting
related patterns. Each possible pattern path in this
network forms a solution path [2, 3]. Solution paths
define the application order of patterns in this work.

1. Select
Pattern of
Solution

Path

2. Check
Require-

ments

3.
Rewrite

or Refine

Pattern Language ! ∈ #

M1
M2

M5

M3
M4

M7

M6

Solution Path$ ∈ %(!)

Modified Architectural
Graph ()*(+)

In
put

M3 M4

M6

Solution Path

Architectural
Graph , ∈ -,
+ = (0+, 1+)

23

456

756

Required Fragment 23 ∈ 8

Components
9: ⊆ <

Connectors
=: ⊆ ℰ

Architectural Graph ?
M3

23

Required Fragment)*

⊲?

Architectural Graph ?
M3

456

Modification Fragment 45A

756

Selected Solution Path
$ = (B*,BC,BD)

)* ⊲ +

Pattern
E3 ∈ ℳ,

E3 = (23, 456, 756)

Modification Fragment 456 ∈ 8

Local Pattern Operator 756: 8 → 8

M
ic

ha
el

 W
ur

st
er

Conclusion & Future Work – Poster Session

© Jasmin Guth SummerSoC 2019 14

Thank you for your attention – I hope for interesting discussions during the poster session!
J

Jasmin Guth and Frank Leymann

[lastname]@iaas.uni-stuttgart.de

Pattern-based Rewrite
and Refinement of

Architectures Using
Graph Theory

Jasmin Guth
Frank Leymann

Institute of Architecture of Application Systems

With the continuous growth of IT application systems, the complexity of architecture modeling and development
increases. Architectural patterns should support the modeling and development process. Due to their documenta-
tion as text documents, they cannot be applied to an architecture automatically: Patterns have to be read, under-
stood, adapted to the corresponding use case, and realized manually over and over again. Consequently, archi-
tecture modeling considering the variety of documented patterns becomes even more complex. To tackle these
issues, we introduce an approach for an automated application and realization of patterns in architectural graphs.

Abstract

Concept – Pattern-based Rewrite and Refinement of Architectures Using Graph Theory

Selected Related Work

Architectural Graphs Patterns, Pattern Languages & Solution Paths

We use architectural graphs to formalize an
application system’s architecture, whereby nodes
represent the components and edges represent the
connectors among the components of an architect-
ure [1]. Furthermore, each node is mapped to a
type, such as application, server, or virtual machine.

[1] Le Métayer, D.: Describing Software Architecture Styles Using Graph Grammars. IEEE Transactions on Software
Engineering, Volume 24 Issue 7, pp. 521-522 (July 1998)

[2] Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F., Hadjakos, A., Hentschel, F., and Schulze, H.:
Leveraging Pattern Application via Pattern Refinement. In: PURPLSOC 2015, pp. 38-61, epubli GmbH (June 2015)

[3] Zdun, U.: Systematic Pattern Selection Using Pattern Language Grammars and Design Space Analysis. Software:
Practice & Experience, Volume 37 Issue 9, pp. 983-1016 (July 2007)

Patterns describe proven solutions for recurring
problems in an abstract and human readable way. A
pattern language comprises a network connecting
related patterns. Each possible pattern path in this
network forms a solution path [2, 3]. Solution paths
define the application order of patterns in this work.

1. Select
Pattern of
Solution

Path

2. Check
Require-

ments

3.
Rewrite

or Refine

Pattern Language ! ∈ #

M1
M2

M5

M3
M4

M7

M6

Solution Path$ ∈ %(!)

Modified Architectural
Graph ()*(+)

In
put

M3 M4

M6

Solution Path

Architectural
Graph , ∈ -,
+ = (0+, 1+)

23

456

756

Required Fragment 23 ∈ 8

Components
9: ⊆ <

Connectors
=: ⊆ ℰ

Architectural Graph ?
M3

23

Required Fragment)*

⊲?

Architectural Graph ?
M3

456

Modification Fragment 45A

756

Selected Solution Path
$ = (B*,BC,BD)

)* ⊲ +

Pattern
E3 ∈ ℳ,

E3 = (23, 456, 756)

Modification Fragment 456 ∈ 8

Local Pattern Operator 756: 8 → 8

