Pattern-based Rewrite and Refinement
of Architectures Using Graph Theory

\7474]{ Research

Summer SoC 2019, Crete, Greece

Jasmin Guth and Frank Leymann
{guth, leymann}@iaas.uni-stuttgart.de

University of Stuttgart Institute of Architecture of Application Systems

Introduction & Motivation

A

Q&

r3.6.2 Message-oriented Middleware

Asynchronous message-based communication is provided while hiding complexi-
ty resulting from addressing, routing, or data formats from communication part-
ners to make interaction robust and flexible.

D]
How can communication partners exchange information asyn-
chronously with a communication partner?
Context

The application components of a distributed application (139) are hosted on
multiple cloud resources and have to exchange information with each other. Often,
the integration with other cloud applications and non-cloud applications is also re-
quired. These different applications possibly use different programming lan-
guages, data formats, and execution environments (94). When one application di-
rectly exchanges information with another application, the address and data format
of the target application has to be respected. Even within one homogeneous dis-
tributed application (139), the communicating application components must be
available at the time when the information shall be exchanged. These dependen-
cies can significantly reduce the availability of the overall application as the fail-
ure of one application component would directly affect all components communi-
cations with it. The resulting dependency between communication partners
regarding their location, availability, and data format is called tight coupling. 1t al-
so increases the complexity of the management of the overall application or the
landscape of applications, because changes to one communication partner, for ex-
ample, regarding the format of exchanged data or the address used, also affect the
other communication partner directly. This should be avoided to increase the
availability of the overall application and ease continuous alterations by making
communication flexible.

Solution
Communication partners exchange information asynchronously using messages

A pub-sub channel [1] may be used to broadcast a message to multiple receiv-
ers. While a message queue conceptually delivers messages to only one receiver, a
pub-sub channel delivers messages to multiple receivers.

Message-oriented Middleware

&-®
{ —»(Ei-—.—>.

Transform ,N

==

At-least-once Exactly-once Transaction-based Timeout-based
Delivery Delivery Delivery Delivery

Figure 37: M

X

[.3

Route

iented Middleware and Related Patterns

Result

When i ing with a ge-oriented e, a sender puts a message
on one message queue or pub-sub channel and receivers can retrieve it from pos-
sibly different queues. In between these two access points the message-oriented
middleware handles the complexity of addressing, availability of communication
partners and message format transformation as shown in Figure 37. Therefore, in
addition to message queues, the iented middl e provides compo-
nents that route messages to intended receivers as well as handle message format
transformation. Communication partners may communicate via messages without
the need to know the message format expected by the communication partner or
the address at which it can be reached. Furthermore, communication partners can
send and receive messages at their own pace and without relying on the availabil-
ity of communication partners.

[1]The ige-oriented e, therefore, suggests a pipes-and-filters
application architecture as covered by Hohpe and Woolf [1], Bushmann et al. [14]
and in the distributed application (143) pattern in Chapter 4. In this scope, appli-

P

PR

7

cation components act as independently operating filters that are interconnected
through pipes, i.e., the message queues provided by the message-oriented middle-
ware. Hohpe and Woolf [1] describe the behavior of these pipes and how they
may be connected. Regarding the filters, i.e., the application components, Hohpe
and Woolf also described how to interface with the messaging systems in the
adapter pattern.

The more intermediaries a message passes through while traversing a message-
oriented middleware, the more likely it becomes that an intermediary fails. To ad-
dress this issue, messages are often stored in persistent storage by the message-
oriented middleware from where they can be recovered in case of failures. This
approach is described by the guaranteed delivery pattern introduced by Hohpe and
Woolf[1].

Variations

A message-oriented middleware is used if small amounts of data need to be ex-
changed frequently, as messages are often restricted in size so they can be handled
more easily. If larger amounts of data have to be exchanged, messages may either
contain a pointer to this data that is actually stored at a different location, for ex-
ample, a storage offering (see Section 3.5) or the data may be split up among mul-
tiple messages. Hohpe and Wolf [1] cover patterns for this exchange of large data
elements: the file transfer pattern describes how data may be exported from one
application and imported by a different one. A message sequence may be used to
split large data elements among a set of messages.

Related Patterns
Figure 37 shows how the other messaging patterns of this section are related to

the message oriented middleware:

= At-least-once delivery (128): it is ensured that messages traversing the mes-
sage-oriented middleware are delivered once or multiple times. This is
achieved through acknowledgements for message receives. If an acknowl-
edgement is not received, a message is retransmitted.

= Exactly-once delivery (126): messages traversing the message-oriented mid-
dleware are delivered once and only once to the receiver. This involves relia-
bly storage of mn in the oriented middl e and, often,
transactional message exchange during its traversal of the message-oriented

piddieyware,

In addition to these communication patte}
should be considered to be implemented i
teracting with a message-oriented middlew

Known Uses
Using messaging to integrate distribute
approach. Many additional messaging patt/

Transaction-based processor (179): iffl
transactions to assure that messages
transaction can be extended to includ
the receiver as well. Therefore, the #
application to assure that messages ar
havior is also described by Hohpe an
tern. The transaction-based processor]
extends it to the transactional interacti
Timeout-based message processor (181
assures at-least-once delivery (128) b,
client can extend the acknowledgmen!
Therefore, the timeout-based message,
sure that messages are processed at le
Distributed application (139): applig
loosely coupled (139) application c
oriented middleware to exchange inf}|
scope, an idempotent processor (176
messages created by a message-oriel
delivery.

Message mover component (201): thi}|
different message-oriented middlewar
providers or that are installed in on-prg
Watchdog (230): a watchdog may be
pecially, in scope of environment-b
queues to store information securely e
Batch processing component (165): n]
delay messages. A batch processing
only when conditions are feasible, fo
low or the overall application experien

© Jasmin Guth, IAAS

C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud Computing Patterns: Fundamentals to Design, Build, and Manage Cloud Applications. Springer, 2014.

SummerSoC 2019

Pattern-based Rewrite and Refinement of
Architectures Using Graph Theory

Application Example

Application Example — Input

Input
Go: p:

|1/J(n1) = Client |

B0

|1/J(n2) = Serverl

M,:
Message-
oriented

Middleware

M,:
Watchdog

© Jasmin Guth SummerSoC 2019

Application Example — M,: MOM — Check Requirements

Input
Go: p:
=‘ u UL |
. M,:
. . Message-
. oriented
:Rl H Middleware
. n M:
: f—
‘l | N |
1

© Jasmin Guth SummerSoC 2019

Application Example — M,: MOM — Refine or Rewrite

Input

=
= | |
EZE m
<.

M,:
Message-
oriented

Middleware

M,:
Watchdog

MOM.applyPattern(G,)

© Jasmin Guth

SummerSoC 2019

Gll
@= Client] [l/}(nz) =
ns

[1/)(713) :Eﬂ

Application Example — M,: Watchdog — Check Requirements

-Rl

| ==
| o—a
J [

Input

PY(ny) = Client

Y(n,) = Server

@= Client]

Gll

N3

|1/)(n2) = Server{
: Ry :

[1.0("3) :M/Ollﬂ

© Jasmin Guth

SummerSoC 2019

Application Example — M,: Watchdog — Refine or Rewrite

PY(ny) = Client

| CORRXER .
|| — Gy:
N

Y(ny) = Server @: Client] |l/)(n2) = Se‘}”ve'}"{ E
] R2 :

.

[1.0(”3) :M/Ollﬂ

Watchdog.applyPattern(G,)

]
| B R4

GZ:
Yy(ny) = Client] @z Server

BB -

_—7
Y(n;) = MOM [1/)(714) = Watchdog

a
[
\—/

)

© Jasmin Guth SummerSoC 2019

Pattern-based Rewrite and Refinement of
Architectures Using Graph Theory

Concept & Formalization

Concept: Pattern-based Rewrite and Refinement of Architectures

Architectural
Graph G € G,
G = (NG»EG)

Components
Ne SNV

Connectors
E;,c€&

Pattern Language L € £

1. Select
Pattern of
Solution
Path

© Jasmin Guth

: 2. Check
Rewrite Require-
or Refine ments

SummerSoC 2019

10

Concept: Pattern-based Rewrite and Refinement of Architectures

Architectural
Graph G € g, Pattern Language L € £

G = (Ng, Eg)
Components
Ne SNV

Connectors
E;,c€&

Selected Solution Path / N
Pattern
M; € M,
| | My = (R, Fry, fr,)
4/
ﬁ Required Fragment R; € §
1. Select
Pattern of ﬁ Modification Fragment Fp, € G
Solution
Path ﬁLocaI Pattern Operator fz.: G = G

© Jasmin Guth

2. Check

Rewrite Require-
or Refine ments

SummerSoC 2019

11

Concept: Pattern-based Rewrite and Refinement of Architectures

Architectural
Graph G € g, Pattern Language L € £
G = (Ng, Eg)
Components
N, C NN

Connectors

Selected Solution Path

4

Pattern

M; € I,
| | My = (R, Fry, fr,)
J

~

ﬁ Required Fragment R; € §

N

J

1. Select \
Pattern of ﬁ Modification Fragment Fp, € G

Solution .
c
Eg €& ﬁLocaI Pattern Operator fz.: G = G
. 2. Check Architectural Graph G
Rewrite Require-
or Refine ments
Required Fragment R; :R3><IG.J
© Jasmin Guth SummerSoC 2019

12

Concept: Pattern-based Rewrite and Refinement of Architectures

Architectural
Graph G € G,
G = (Ng Eg)
Components
N, C NN

Connectors
E;,c€&

Pattern Language L € £

Architectural Graph G

Rewrite
or Refine

Selected Solution Path

4

Pattern

M; € I,
| | My = (R, Fry, fr,)
J

~

ﬁ Required Fragment R; € §

N

J

1. Select \
Pattern of ﬁ Modification Fragment Fp, € G

Solution

ﬁLocaI Pattern Operator fz.: G = G
L J

2. Check
Require-
ments

Architectural Graph G

Modified Architectural
L Graph fg,(G)

Modification Fragment Fpg,

|

Required Fragment R3

a "

© Jasmin Guth

SummerSoC 2019

13

Conclusion & Future Work — Poster Session

Architectural
Graph G € G, Pattern Language L € L

G = (Ng E¢)
Components
N, SN

Selected Solution Path / N
k Pattern

M; € M,

| [My = (R, Fry, fry)
/

ﬁ Required Fragment R; € §

1. Select
Pattern of ﬁ Modification Fragment F, € §
Solution

Connectors
E;c €&

ﬁLocaI Pattern Operator fz.: G = G
15

Architectural Graph G Architectural Graph G

. . M,
Rewrite Require-

or Refine ments

|

Modification Fragment Fp, Required Fragment R;

Modified Architectural
Graph f,(G)

R, <6 /)

Thank you for your attention — | hope for interesting discussions during the poster session!

©

© Jasmin Guth SummerSoC 2019

AN J

