
State management in
distributed stream processing systems

Kostas Magoutis

Computer Science Department

University of Crete, Greece

Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

Agenda

• Distributed stream processing

– What is state? How is it typically managed?

• Fault tolerance

– Types of checkpointing

– Focus on continuous incremental checkpointing

• CEC

• LinkedIn Samza

• Recent experience with Samza

• Exactly-once semantics

SummerSOC 2019

References

• Z. Sebepou, K. Magoutis. “Continuous Eventual Checkpointing for
Data Stream Processing Operators”, IEEE DSN 2011, Hong Kong,
China, July 6-9, 2011

• S. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I.
Gupta, R. H. Campbell. “Samza: stateful scalable stream processing
at LinkedIn”, Proc. VLDB Endow. 10, 12, Aug. 2017

• P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, K. Tzoumas.
“State management in Apache Flink: consistent stateful distributed
stream processing”, Proc. VLDB Endow. 10, 12, Aug. 2017

• A. Chronarakis, A. Papaioannou, K. Magoutis, “On the impact of log
compaction on incrementally checkpointing stateful stream-
processing operators”, Proc. DRSS'19, to be held in conjunction
with SRDS’19, Lyon, France, October 1, 2019

SummerSOC 2019

General principles: Aggregate operator

Borealis Application Programmer’s Guide, Brown Univ. Computer Science Department

• Operator state (per window) may be
• One value (accumulating state)
• All tuples that enter the window

General principles: Join operator

Borealis Application Programmer’s Guide, Brown Univ. Computer Science Department

Fault-tolerance in stream processing
systems

• State replication

– Maintain full replicas of operator state across nodes

– High availability, memory requirements

• Checkpoint roll-backward

– Checkpoint to remote disk

– On recovery, load most recent checkpoint

• Types of checkpointing

– Full, periodic

– Delta (incremental), periodic

– Continuous incremental (log of updates)

SummerSOC 2019

Full, periodic checkpoints

output
buffer

operator state
input
buffer

remote store (DFS)

full, periodic
checkpointing

Store durably only
• for replay at a

later time
• spill-over

Trim after operator
checkpoints

Efficient implementations use copy-on-write (COW)
• Complex to implement
• Overhead to compute what needs to be checkpointed
• Overhead handling exceptions during protection fault

Operator freezes during checkpoint
• Large response-time spikes

Incremental checkpointing (CEC, DSN’11)

SummerSOC 2019

output
buffer

operator state
input
buffer

operator (incremental updates)
+ output buffer

Z. Sebepou, K. Magoutis, Continuous eventual checkpointing for data stream processing operators, in Proc. of IEEE DSN’11

Incremental + local state

SummerSOC 2019

output
buffer

operator state
input
buffer

local state

incremental updates

Continuous eventual checkpointing (CEC)

Opening of a new window

Another checkpoint of an open window

Closing of a window

Another checkpoint of an open window

Crash

Recovery

Overall view

18

• Window wk has oldest checkpoint in output queue log

• Producing a checkpoint for it will reduce q

• It will also reduce the number of tuples to replay u

T
more recent

ingested
more recent
written out

Incremental checkpointing:
LinkedIn Samza

SummerSOC 2019

Incremental + local state

SummerSOC 2019

output
buffer

operator state
input
buffer

local state

incremental updates

Use of changelog

S. Noghabi et al. “Samza: stateful scalable stream processing at LinkedIn”, Proc. VLDB Endow. 10, 12, Aug. 2017

Sync changelog, then update “successfully processed” input offset (=>at least once)

Recent experience with incremental
checkpointing in Samza

SummerSOC 2019

Window-based streaming application

SummerSOC 2019

• Per-window operator state may contain
• One value (accumulating state)

• FoldLeftFunction (FLF)
• All tuples that enter the window

• Retain all (RetainALL)

Changelog and compaction

SummerSOC 2019

Research questions

• How does recovery time depend on changelog size?

• What policies can be used to limit changelog size ?

SummerSOC 2019

Changelog-size vs. overhead

SummerSOC 2019

• Compaction parameters (policies) affect
– Size of changelog, CPU usage of broker

• Trade-off between restore time and overhead

Aggressive compaction Relaxed compaction

• Experiments with segment.ms= {100ms,1000ms} & dirty ratio= {0.01, 0.33, 0.66}

Overall

• Appropriate tuning of compaction configuration
parameters needed to achieve recovery time goals

• What about (exactly-once / at-least-once) semantics?

SummerSOC 2019

Exactly-once semantics

• Flink’s pipelined (asynchronous barrier) checkpointing

• Reminiscent of Chandy-Lamport global snapshots

– Inject markers at input streams

– Take local operator snapshots after having accounted for all
input prior to snapshot time

SummerSOC 2019

References

• Z. Sebepou, K. Magoutis. “Continuous Eventual Checkpointing for
Data Stream Processing Operators”, IEEE DSN 2011, Hong Kong,
China, July 6-9, 2011

• S. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I.
Gupta, R. H. Campbell. “Samza: stateful scalable stream processing
at LinkedIn”, Proc. VLDB Endow. 10, 12, Aug. 2017

• P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, K. Tzoumas.
“State management in Apache Flink: consistent stateful distributed
stream processing”, Proc. VLDB Endow. 10, 12, Aug. 2017

• A. Chronarakis, A. Papaioannou, K. Magoutis, “On the impact of log
compaction on incrementally checkpointing stateful stream-
processing operators”, Proc. DRSS'19, to be held in conjunction
with SRDS’19, Lyon, France, October 1, 2019

SummerSOC 2019

Questions?

H2020 GA no. 731846 EU project

