
MicroStream vs. JPA

An Empirical Investigation

SummerSoC 2022 in person

Benedikt Full, Johannes Manner, Sebastian Böhm and Guido Wirtz

Distributed Systems Group

Otto-Friedrich-University Bamberg, Germany

 What is MicroStream? And why is it worth looking at it?

 Methodology

Why another benchmark?

Experimental Setup

 Results

Bookstore Performance Demo (BSPD) Results

Wholesale Supplier (WSS) Results

 Discussion

MicroStream vs. JPA

Concurrency Best Practices

 Threats to Validity

 Conclusion and Future Work

Agenda

2
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

 „MicroStream is a Java-native object graph persistence engine for

storing […] Java object graph […] and restoring it in RAM at any time by

using a fundamentally new serialization concept designed from

scratch.” (https://microstream.one/platforms/microstream-for-java/)

 Motivation for the paper – why is it worth looking at it:

„ JVM's in-memory data processing speed + MicroStream is proven to

be up to 1000x faster than Hibernate + EHCache.

Minimize latency, maximize throughput & workload, save 90% CPU

power & costs.”
(https://microstream.one/)

 Problem:

Only a few (literally no) built-in concurrency mechanisms

What is MicroStream? And why is it worth looking at it?

3
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

TechStack

4
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

https://microstream.one/platforms/microstream-for-java/

JPA Solution MicroStream Solution

 Application from MicroStream used to repeat the performance claim they stated

(Bookstore Performance Demo (BSPD))

 BSPD is vendor-provided and is not standardized

(strengthen the positive aspects, hide drawbacks)

 Solution: Benchmark application based on a specification

 TPC-C specification (1992) -> Wholesale Supplier (WSS) application

Adapted the specification to an object oriented model

Methodology - Why another benchmark?

5
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

BSPD
(immutable data model)

WSS
(mutable data model)

JPA

MS JACIS

MS Sync

 „Isolate“ OLTP app as much as possible performance-wise

(not introducing side effects)

 JMeter for generating the load (10 users in parallel doing sequential work)

 Measured user perceived performance and server processing time

Experimental Setup

6
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

H90

OLTP App

Netdata

DB

H50

JMeter

Netdata

DB

Ubuntu 20.04 server image on H90 & H50

Fujitsu Esprimo P757

Intel i7-7700, 4 cores

210 GFLOPS peak

32 GB RAM

256 GB SSD as primary device

Fujitsu Esprimo P700

Intel i7-2600, 4 cores

92 GFLOPS peak

16 GB RAM

240 GB SSD as primary device

BSPD6: Getting purchases of foreigners (customer:purchase – 1:N, fetch type LAZY)

Results – BSPD/WSS

7
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

JPA / MS-JACIS /

MS-Sync

[WSS1]

(479/479/479)

[WSS2]

(478/478/479)

[WSS3]

(5388/5386/5390)

[WSS4]

(5147/5145/5148)

[WSS5]

(479/478/479)

Median 8.65 / 87.8 / 0.03

10.15 / 264.3

87 / 162 / 76

1.86 / 1.14

36.77 / 148.25 / 2.03

4.03 / 18.14

115 / 223 / 78

1.94 / 1.47

21.72 / 35.16 / 4.94

1.62 / 4.39

100 / 109 / 80

1.09 / 1.25

10.41 / 9.96 / 5.22

1.05 / 1.99

89 / 84 / 81

1.06 / 1.1

60.44 / 152.12 / 21.52

2.52 / 2.81

138 / 226 / 97

1.64 / 1.42

JPA/MS #Requests Median (in ms) Speed-up

[BSPD1] 6931/8380 68.12 / 2.84 24.03

[BSPD2] 6935/8383 3.64 / 0.91 3.99

[BSPD3] 6934/8382 7.87 / 0.93 8.42

[BSPD4] 6936/8385 2.8 / 0.12 23.3

[BSPD5] 6931/8376 38.24 / 14.59 2.62

[BSPD6] 6929/8376 305.06 / 0.72 426.61

[BSPD7] 6933/8381 3.26 / 1.11 2.93

Results WSS

8
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

1. Is a MicroStream-based solution up to a thousand times faster than a

comparable JPA-based implementation utilizing Hibernate?

2. How can we achieve concurrency control for a mutable data model

with the MicroStream in-memory data engine?

3. What are potential usage scenarios where MicroStream-based

persistence should be used instead of JPA-based persistence?

Research Questions

9
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

„MicroStream is proven to be up to 1000x faster than Hibernate”
(https://microstream.one/)

 BSPD6 experienced the most significant speed-up (427 times faster), BUT

nature of this query was crucial – complex joins in JPA case)

 In other BSPD cases MS is by factors of tens faster than JPA

 MS + JACIS (currently the project having a MS adapter for transaction handling)

is 8-11 times slower compared to JPA

 MS Sync is indeed also up to 264 times faster only for WSS1

 Other WSS cases, also by factors of tens not thousands

User perceived performance more important

 Scheduling, network latency has a major influence

 In this use case, MS Sync is 10% to 47% faster than JPA based solution

RQ1: MicroStream vs. JPA

10
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

 Structured Entity Relationsship Model (SERM) for modelling the domain

 Nesting of the locks is derived from the domain model

 Helps avoiding deadlocks

RQ2: Concurrency Control

11
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

Warehouse

Carrier

District Customer Payment

Order

Item

Product

Employee

Stock

 Dedicated collection locks for performing a number of actions on a set

of instances of the same class

 Only a single write operation is possible at a time (design of MS)

 Synchronized blocks help in especially reading consistent data

RQ2: Concurrency Control

12
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

// method for updating order status and customers

public void deliverOldestOrders (. . . oldestOrders , . . .) {

synchronized (this.storageManger) {

for (OrderData order : oldestOrders) {

. . .

synchronized (customer.getId ()) {

synchronized (order.getId ()) {

. . .

this.storageManger.storeRoot () ;

}

}

 MS is especially suited for “Micro persistence for microservices & serverless

Java functions” (https://microstream.one/)

 Decentralized data management principle for microservices

Good use cases

 Mostly immutable data models

 Java/Cloud-native mircoservices

Where we see need for improvement

 Concurrency control

 JACIS introduces performance shortcomes

 Low level synchronization is error-prone

 Adapters for mature storage solutions

(currently only BLOB storage of object graph)

RQ3: Usage Scenarios

13
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

MS is an alternative to Hibernate and can boost performance.

Threads to Validity

 No Lazy references for MS (all data were in RAM)

 Custom benchmark application (WSS) – not 100% objective

 Used experimental setup

Future Work

 Compare MS with other in-memory database solutions like Redis

 Bottleneck detection tool for looking at the specific hardware

configuration

Conclusion

14
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

Johannes Manner

M.Sc. Applied Computer Sciences

johannes.manner@uni-bamberg.de

Institution and department

Otto-Friedrich-Universität Bamberg

Department of Applied Computer Sciences

Distributed Systems Group

/johannes-manner

/profile/Johannes-Manner

https://www.uni-bamberg.de/
https://github.com/johannes-manner
https://www.researchgate.net/profile/Johannes-Manner
https://www.uni-bamberg.de/pi/team/manner-johannes/

