
MicroStream vs. JPA

An Empirical Investigation

SummerSoC 2022 in person 

Benedikt Full, Johannes Manner, Sebastian Böhm and Guido Wirtz

Distributed Systems Group

Otto-Friedrich-University Bamberg, Germany

 What is MicroStream? And why is it worth looking at it?

 Methodology

Why another benchmark?

Experimental Setup

 Results

Bookstore Performance Demo (BSPD) Results

Wholesale Supplier (WSS) Results

 Discussion

MicroStream vs. JPA

Concurrency Best Practices

 Threats to Validity

 Conclusion and Future Work

Agenda

2
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

 „MicroStream is a Java-native object graph persistence engine for

storing […] Java object graph […] and restoring it in RAM at any time by

using a fundamentally new serialization concept designed from

scratch.” (https://microstream.one/platforms/microstream-for-java/)

 Motivation for the paper – why is it worth looking at it:

„ JVM's in-memory data processing speed + MicroStream is proven to

be up to 1000x faster than Hibernate + EHCache.

Minimize latency, maximize throughput & workload, save 90% CPU

power & costs.”
(https://microstream.one/)

 Problem:

Only a few (literally no) built-in concurrency mechanisms

What is MicroStream? And why is it worth looking at it?

3
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

TechStack

4
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

https://microstream.one/platforms/microstream-for-java/

JPA Solution MicroStream Solution

 Application from MicroStream used to repeat the performance claim they stated

(Bookstore Performance Demo (BSPD))

 BSPD is vendor-provided and is not standardized

(strengthen the positive aspects, hide drawbacks)

 Solution: Benchmark application based on a specification

 TPC-C specification (1992) -> Wholesale Supplier (WSS) application

Adapted the specification to an object oriented model

Methodology - Why another benchmark?

5
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

BSPD
(immutable data model)

WSS
(mutable data model)

JPA

MS JACIS

MS Sync

 „Isolate“ OLTP app as much as possible performance-wise

(not introducing side effects)

 JMeter for generating the load (10 users in parallel doing sequential work)

 Measured user perceived performance and server processing time

Experimental Setup

6
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

H90

OLTP App

Netdata

DB

H50

JMeter

Netdata

DB

Ubuntu 20.04 server image on H90 & H50

Fujitsu Esprimo P757

Intel i7-7700, 4 cores

210 GFLOPS peak

32 GB RAM

256 GB SSD as primary device

Fujitsu Esprimo P700

Intel i7-2600, 4 cores

92 GFLOPS peak

16 GB RAM

240 GB SSD as primary device

BSPD6: Getting purchases of foreigners (customer:purchase – 1:N, fetch type LAZY)

Results – BSPD/WSS

7
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

JPA / MS-JACIS /

MS-Sync

[WSS1]

(479/479/479)

[WSS2]

(478/478/479)

[WSS3]

(5388/5386/5390)

[WSS4]

(5147/5145/5148)

[WSS5]

(479/478/479)

Median 8.65 / 87.8 / 0.03

10.15 / 264.3

87 / 162 / 76

1.86 / 1.14

36.77 / 148.25 / 2.03

4.03 / 18.14

115 / 223 / 78

1.94 / 1.47

21.72 / 35.16 / 4.94

1.62 / 4.39

100 / 109 / 80

1.09 / 1.25

10.41 / 9.96 / 5.22

1.05 / 1.99

89 / 84 / 81

1.06 / 1.1

60.44 / 152.12 / 21.52

2.52 / 2.81

138 / 226 / 97

1.64 / 1.42

JPA/MS #Requests Median (in ms) Speed-up

[BSPD1] 6931/8380 68.12 / 2.84 24.03

[BSPD2] 6935/8383 3.64 / 0.91 3.99

[BSPD3] 6934/8382 7.87 / 0.93 8.42

[BSPD4] 6936/8385 2.8 / 0.12 23.3

[BSPD5] 6931/8376 38.24 / 14.59 2.62

[BSPD6] 6929/8376 305.06 / 0.72 426.61

[BSPD7] 6933/8381 3.26 / 1.11 2.93

Results WSS

8
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

1. Is a MicroStream-based solution up to a thousand times faster than a

comparable JPA-based implementation utilizing Hibernate?

2. How can we achieve concurrency control for a mutable data model

with the MicroStream in-memory data engine?

3. What are potential usage scenarios where MicroStream-based

persistence should be used instead of JPA-based persistence?

Research Questions

9
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

„MicroStream is proven to be up to 1000x faster than Hibernate”
(https://microstream.one/)

 BSPD6 experienced the most significant speed-up (427 times faster), BUT

nature of this query was crucial – complex joins in JPA case)

 In other BSPD cases MS is by factors of tens faster than JPA

 MS + JACIS (currently the project having a MS adapter for transaction handling)

is 8-11 times slower compared to JPA

 MS Sync is indeed also up to 264 times faster only for WSS1

 Other WSS cases, also by factors of tens not thousands

User perceived performance more important

 Scheduling, network latency has a major influence

 In this use case, MS Sync is 10% to 47% faster than JPA based solution

RQ1: MicroStream vs. JPA

10
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

 Structured Entity Relationsship Model (SERM) for modelling the domain

 Nesting of the locks is derived from the domain model

 Helps avoiding deadlocks

RQ2: Concurrency Control

11
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

Warehouse

Carrier

District Customer Payment

Order

Item

Product

Employee

Stock

 Dedicated collection locks for performing a number of actions on a set

of instances of the same class

 Only a single write operation is possible at a time (design of MS)

 Synchronized blocks help in especially reading consistent data

RQ2: Concurrency Control

12
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

// method for updating order status and customers

public void deliverOldestOrders (. . . oldestOrders , . . .) {

synchronized (this.storageManger) {

for (OrderData order : oldestOrders) {

. . .

synchronized (customer.getId ()) {

synchronized (order.getId ()) {

. . .

this.storageManger.storeRoot () ;

}

}

 MS is especially suited for “Micro persistence for microservices & serverless

Java functions” (https://microstream.one/)

 Decentralized data management principle for microservices

Good use cases

 Mostly immutable data models

 Java/Cloud-native mircoservices

Where we see need for improvement

 Concurrency control

 JACIS introduces performance shortcomes

 Low level synchronization is error-prone

 Adapters for mature storage solutions

(currently only BLOB storage of object graph)

RQ3: Usage Scenarios

13
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

MS is an alternative to Hibernate and can boost performance.

Threads to Validity

 No Lazy references for MS (all data were in RAM)

 Custom benchmark application (WSS) – not 100% objective

 Used experimental setup

Future Work

 Compare MS with other in-memory database solutions like Redis

 Bottleneck detection tool for looking at the specific hardware

configuration

Conclusion

14
B. Full et al.: Microstream vs. JPA: An Empirical Investigation

@ SummerSoC 2022

Johannes Manner

M.Sc. Applied Computer Sciences

johannes.manner@uni-bamberg.de

Institution and department

Otto-Friedrich-Universität Bamberg

Department of Applied Computer Sciences

Distributed Systems Group

/johannes-manner

/profile/Johannes-Manner

https://www.uni-bamberg.de/
https://github.com/johannes-manner
https://www.researchgate.net/profile/Johannes-Manner
https://www.uni-bamberg.de/pi/team/manner-johannes/

