[
(]

MicroStream vs. JPA
An Empirical Investigation

SummerSoC 2022 in person ©

Benedikt Full, Johannes Manner, Sebastian Bohm and Guido Wirtz

Distributed Systems Group
Otto-Friedrich-University Bamberg, Germany

Agenda Ry

o What is MicroStream? And why is it worth looking at it?
0 Methodology
= Why another benchmark?
= Experimental Setup
0 Results
= Bookstore Performance Demo (BSPD) Results
= Wholesale Supplier (WSS) Results
a Discussion
= MicroStream vs. JPA
= Concurrency Best Practices
= Threats to Validity
a Conclusion and Future Work

B. Full et al.: Microstream vs. JPA: An Empirical Investigation
@ SummerSoC 2022 2

What is MicroStream? And why is it worth looking at it? i)

o ,MicroStream is a Java-native object graph persistence engine for
storing [...] Java object graph [...] and restoring it in RAM at any time by
using a fundamentally new serialization concept designed from

scratch.” (https://microstream.one/platforms/microstream-for-java/)

o Motivation for the paper — why is it worth looking at it:
, JVM's in-memory data processing speed + MicroStream is proven to
be up to 1000x faster than Hibernate + EHCache.
Minimize latency, maximize throughput & workload, save 90% CPU
power & costs.”

(https://microstream.one/)

0 Problem:
Only a few (literally no) built-in concurrency mechanisms

B. Full et al.: Microstream vs. JPA: An Empirical Investigation
@ SummerSoC 2022 3

TechStack i)

JPA Solution MicroStream Solution

Application
Microservice

Java Objects
Object Graph
ORM Framework
Data Conversion
MicroStream
e
Binary Data
Local Cache Binary Data
Binary Data
RDBMS Binary Data
Tables | Binary Data
Java VM

Native image

NeSaL

Column Store
Key-Value Store
Document Store
Geaph DB
Object DB

Event Streaming

https://microstream.one/platforms/microstream-for-java/

B. Full et al.: Microstream vs. JPA: An Empirical Investigation
@ SummerSoC 2022 4

e
Methodology - Why another benchmark?

a Application from MicroStream used to repeat the performance claim they stated
(Bookstore Performance Demo (BSPD))

o BSPD is vendor-provided and is not standardized
(strengthen the positive aspects, hide drawbacks)

> Solution: Benchmark application based on a specification

a TPC-C specification (1992) -> Wholesale Supplier (WSS) application
Adapted the specification to an object oriented model

BSPD WSS
(immutable data model) (mutable data model)
JPA ‘_‘% Java ‘_‘% Java
MS JACIS Lava
MS Sync éj Javar é:j Javar

B. Full et al.: Microstream vs. JPA: An Empirical Investigation
@ SummerSoC 2022 5

IEIE
=

2=

Experimental Setup .
H90 H50
DB > JMeter
y
OLTP App < {— b8 |
$
Netdata Netdata

Ubuntu 20.04 server image on H90 & H50

Fujitsu Esprimo P757 Fujitsu Esprimo P700

Intel i7-7700, 4 cores Intel i7-2600, 4 cores

210 GFLOPS peak 92 GFLOPS peak

32 GB RAM 16 GB RAM

256 GB SSD as primary device 240 GB SSD as primary device

0 ,Isolate” OLTP app as much as possible performance-wise
(not introducing side effects)

o JMeter for generating the load (10 users in parallel doing sequential work)
0 Measured user perceived performance and server processing time

B. Full et al.: Microstream vs. JPA: An Empirical Investigation
@ SummerSoC 2022 6

IEIE
=

[
Results — BSPD/W 3
JPA/MS #Requests Median (in ms) Speed-up
[BSPD1] 6931/8380 68.12/2.84 24.03
[BSPD2] 6935/8383 3.64/0.91 3.99
[BSPD3] 6934/8382 7.87/0.93 8.42
[BSPD4] 6936/8385 2.8/0.12 23.3
[BSPD5] 6931/8376 38.24/ 14.59 2.62
[BSPD6] 6929/8376 305.06/0.72 426.61
[BSPD7] 6933/8381 3.26/1.11 2.93
BSPDG6: Getting purchases of foreigners (customer:purchase — 1:N, fetch type LAZY)
JPA / MS-JACIS / [WSS1] [WSS2] [WSS3] [WSS4] [WSS5]
MS-Sync (479/479/479) (4781478/479) (5388/5386/5390) | (5147/5145/5148) (479/478/479)
Median 8.65/87,82/0.03 | 36.77/148.25/2.03 | 21.72/35.16/ 4.94 | 10.41/9.96/5.22 | 60.44/152.12 / 21.52
10.15(264.3 4.03/18.14 1.62/ 4.39 1.05/1.99 2.52/2.81
87 /162776 115/ 223778 100/ 109/ 80 89 / 8481 138/226/ 97
1.86/1.14 1.94/ 1.47 1.09/1.25 1.06// 1.1 1.64/1.42

B. Full et al.: Microstream vs. JPA: An Empirical Investigation
@ SummerSoC 2022 7

7
Results WSS i

Queries WSS - JPA Queries WSS - MS-JACIS Queries WSS - MS-Sync

150

w Jo €
o - o
g g o
w w o b
E E E
E £ £
= = =
2 h] k=
B B B
> = =]
a a a
[=p
o @
o
o 5 o o
o e
2 - a, 3o =}
& g = o e o
&
w -
%) o o o
5c9p®ma&;&’o o oo aow@‘
COOD 00 e oD ook ¢ O dood
o
o o o = -
00:00:00 01:49:00 03:38:00 05:27:00 07:16:00 00:00:00 01:49:00 03:38:00 05:27:00 07:16:00 00:00:00 01:49:00 03:38:00 05:27:00 07:16:00

Fig.4. Wholesale Supplier business transactions: Order-Status (blue)l Stock-Level
(red), New-Order (orange), Delivery (green), and Payment (brown).

B. Full et al.: Microstream vs. JPA: An Empirical Investigation
@ SummerSoC 2022 8

IEIE
=

2=

Research Questions s

1. Is a MicroStream-based solution up to a thousand times faster than a
comparable JPA-based implementation utilizing Hibernate?

2. How can we achieve concurrency control for a mutable data model
with the MicroStream in-memory data engine?

3. What are potential usage scenarios where MicroStream-based
persistence should be used instead of JPA-based persistence?

B. Full et al.: Microstream vs. JPA: An Empirical Investigation
@ SummerSoC 2022 9

| 2
RQ1: MicroStream vs. JPA B

Q

Q

,2MicroStream is proven to be up to 1000x faster than Hibernate”

(https://microstream.one/)

BSPD6 experienced the most significant speed-up (427 times faster), BUT
nature of this query was crucial — complex joins in JPA case)

In other BSPD cases MS is by factors of tens faster than JPA

MS + JACIS (currently the project having a MS adapter for transaction handling)
Is 8-11 times slower compared to JPA

MS Sync is indeed also up to 264 times faster only for WSS1
Other WSS cases, also by factors of tens not thousands

User perceived performance more important

> Scheduling, network latency has a major influence

>

In this use case, MS Sync is 10% to 47% faster than JPA based solution

B. Full et al.: Microstream vs. JPA: An Empirical Investigation
@ SummerSoC 2022 10

e
RQ2: Concurrency Control

Q Structured Entity Relationsship Model (SERM) for modelling the domain

Carrier g Order |
*_Employee
Warehouse " District > Customer [~ Payment
B Stock —3 Item
Product

> Nesting of the locks is derived from the domain model
> Helps avoiding deadlocks

B. Full et al.: Microstream vs. JPA: An Empirical Investigation
@ SummerSoC 2022 11

#539

RQ2: Concurrency Control)

0 Dedicated collection locks for performing a number of actions on a set
of instances of the same class

o Only a single write operation is possible at a time (design of MS)
0 Synchronized blocks help in especially reading consistent data

/[method for updating order status and customers
public void deliverOldestOrders (. . . oldestOrders , . ..){
synchronized (this.storageManger) {
for (OrderData order : oldestOrders) {

synchronized (customer.getld ()) {
synchronized (order.getid ()) {

this.storageManger.storeRoot () ;

B. Full et al.: Microstream vs. JPA: An Empirical Investigation
@ SummerSoC 2022 12

2=

RQ3: Usage Scenarios :

a MS is especially suited for “Micro persistence for microservices & serverless
Java functions” (https://microstream.one/)

o Decentralized data management principle for microservices

Good use cases
o Mostly immutable data models
o Java/Cloud-native mircoservices

Where we see need for improvement

a Concurrency control
= JACIS introduces performance shortcomes
= | ow level synchronization is error-prone

0 Adapters for mature storage solutions
(currently only BLOB storage of object graph)

B. Full et al.: Microstream vs. JPA: An Empirical Investigation
@ SummerSoC 2022 13

Conclusion i)

MS is an alternative to Hibernate and can boost performance.

Threads to Validity

0 No Lazy references for MS (all data were in RAM)

o Custom benchmark application (WSS) — not 100% objective
0 Used experimental setup

Future Work
a Compare MS with other in-memory database solutions like Redis

0 Bottleneck detection tool for looking at the specific hardware
configuration

B. Full et al.: Microstream vs. JPA: An Empirical Investigation
@ SummerSoC 2022 14

Johannes Manner
M.Sc. Applied Computer Sciences

johannes.manner@uni-bamberg.de

o /johannes-manner

/profile/Johannes-Manner

Institution and department
Otto-Friedrich-Universitat Bamberg
Department of Applied Computer Sciences
Distributed Systems Group

https://www.uni-bamberg.de/
https://github.com/johannes-manner
https://www.researchgate.net/profile/Johannes-Manner
https://www.uni-bamberg.de/pi/team/manner-johannes/

