Cloud Orchestration

(SummerSoC 2014: June 30 — July 5, 2014 — Hersonissos, Crete, Greece)

Phone +49-711-685 88470
Fax +49-711-685 88472

University of Stuttgart Prof. Dr. Frank Leymann
Universitatsstr. 38 Institute of Architecture of Application Systems
70569 Stuttgart Leymann@iaas.uni-stuttgart.de

Germany

A

Agenda
The Need for Topologies
TOSCA Quick Overview
Declarative vs Imperative Processing
TOSCA Simple Profile
Orchestration Engines Architecture
Summary

aad

Agenda
The Need for Topologies

Sample Application

4 A

GUI Rendering

(Browser)
\ J
—————————————————————————— N e e e

e A

GUI Handling

(Servlets)
\ / Presentation
v —

() Layer

Web Server

Account . .
MEEEE TR Marketing Campalgns
(EJBs) (Assemblies)
\ J \ i i
7 T I | Business Logic
4 D 4 A 4 A Layer
JEE Server .Net App Server ... App Server
\ J \ J \ J
Tt - Tt e Tt - -———
4 A 4 A 4 a
Account DBMS Marketing CMS ... DBMS
\ J U J J - Data Access
—— —— ——— Layer

Account DB Marketing DB “

© Frank Leymann 4

Packaging in a Virtual Machine

ccccccc
aaaaaaaaaa

GUI Handling

eeeeeeeee

Marketing Campains

EEEEEEEEEEEE

ccccccccccc

Marketing CMA

© Frank Leymann

m First and naive approach:
you package the whole
application into a single
virtual machine and move
it to the cloud

m Customers start using it
from their browsers

m They like it, and more and
more are using it ©

m Thus, you need to scale!

Scaling Based on VMs

m You instantiate a second VM

containing your application in the
cloud

m Thus, your customers are happy!

m But, what about you?

m How many licenses of App Servers, DBMS,
CMS,... do you have to pay?

m For example, if the customers use the

W Account features mostly, why do you

replicate the Marketing stack and pay for the
corresponding licenses?

m What about your Account DB getting out
of sync?

m Storage is associated with single VM, but

updates need to be synchronized across VMs
to result in consistent data

© Frank Leymann

Solving Scaling Related Problems: First Step

GUI Handling

ccccccc

aaaaaaaaaaaaa
aaaaaaaaaaa

............

Account DBMS Marketing CMA

Data as a Service (aspect of laaS)

© Frank Leymann

m You package the different
stacks of your applications
Into separate VMs

m You persist your data in
storage features of the
cloud (“Data as a Service”)

m Data can then be shared
when scaling out

m This enables replication of
individual stacks for scaling
m Avoiding the problems

indicated before (licensing,
data consistency,...)

Scaling Related Problems: Further Granularity Issues

GUI Handling
(Servlets)

X

Web Server

© Frank Leymann

Better scaling of
the “Account Stack”
of the overall app

— —
oo oD Marketing Campains
aaaaaaaaaaaaaaaaaaaa (.Net Assemblies))
(EJBs) (EJBs)
— — — — A .
App Serve Ji pp S pp Sel App Sel
1 1 1 1
ccountDBMS R || ||} = Account DBMS Marketing CMA DBMS
'\‘ ’/'
=TT T
Account DB MarketingDB “

m When a particular stack is

under high request load,
it can be scaled by
starting multiple
instances of the
corresponding VMs

Data is shared between
these VMs because
database content is
stored in storage features
of l1aaS

But maybe the underlying
DBMS can sustain the
load generated by many
App Servers?

m |.e.license cost can be
reduced, etc

Proper Granularity for Scaling

m You package
“appropriate”
components of your
application in separate
VMs so that they can
scale independently

m Now multiple VMs

L containing the App
—\ = Server can use the
= = I— same DBMS
| = m Butthe DBMS in the
- - o separate machine

needs maintenance

m Doyouwanttodoit
by yourself?

© Frank Leymann

Consequences of Proper Granularity

© Frank Leymann

GUI Handling

m Next stepisto
consider features
provided by the cloud
environment that may
substitute components
of your VMs

m For example, DBMS,
App Server

m E.g. Amazon SimpleDB,
Google AppEngine,...

10

Towards “Cloud Native”

m Next, elasticity (i.e.
on-demand scale-in &
scale-out) requires...

m Loose coupling of
........ components

m Automatic start/stop
of instances of
components

m Stateless components

© Frank Leymann 11

Agenda

TOSCA Quick Overview

12

What We Understood So Far

m So, your application is
componentized

m You specify all middleware
and infrastructure the
application needs

m You specify all relations
between these pieces and
what the nature of that
relations are

m You specified the topology
of the application

© Frank Leymann 13

TOSCA

A language for defining
Service Templates ...

.. including a Topology |
Template describing the
structure of a service

..includingthe — |
definition of Plans for

orchestrating the
application

Service Template

e

Topology Template

Relationship
Template

type for

Node
Template
J
e ™
Plans

© Frank Leymann

J

é Node Types
Capabilities PP —
- —
[} 3/ N —
£ o}
] =
o)
e ﬁ%}:} S
o (%)
_ Requirements * s
. Installables
ey
Images
| e
~——

Properties

Relationship Types _

{

SBDgJJBIU

Packaging format for
packaging models and all

Cloud Service ARchive (CSAR) related artifacts.

OASIS 9 Topology and Orchestration Specification for Cloud Applications

Definition of building

/ blocks for services
Scripts

... along with the
implementation
artifacts for
manageability
operations

... and the definition
of deployment
artifacts for
components

Definition of possible
links between
components

14

Sample Topology: SugarCRM

DependsOn

PHP Module SugarCRM App

ConnectsTo SugarCRM DB

(PhpModule) (SugarCrmApp)

HostedOn HostedOn

ApacheWebServer
(ApacheWebServer)

HostedOn

OS-Apache
(OperatingSystem)

HostedOn

VM-Apache
(VirtualMachine)

HostedOn

Web Tier

(Tier)

© Frank Leymann

(SugarCrmDb)

HostedOn

MySQL
(MysQL)

HostedOn

0S-MysQL

(OperatingSystem)

HostedOn

VM-MySQL
(VirtualMachine)

HostedOn

DB Tier
(Tier)

15

Definitions File: Overall Structure

<Definitions id="xs:ID” name="xs:string”? targetNamespace="xs:anyURI">

<Extensions/>?
<Import />*
<Types/>?

(<ServiceTemplate/>
| <NodeType/>
| <NodeTypelmplementation/>
| <RelationshipType/>
| <RelationshipTypelmplementation/>
| <RequirementType/>
| <CapabilityType/
| <ArtifactType/>
| <ArtifactTemplate/>
| <PolicyType/>
| <PolicyTemplate/>)+

</Definitions>

© Frank Leymann

16

Node Type: Overall Structure

<NodeType name="xs:NCName" targetNamespace="xs:anyURI"?

abstract="yes[no"? final="yes[no"?>+

<Tags/>?

<DerivedFrom nodeTypeRef="QName"/>?

<PropertiesDefinition element="Qname"?
type="QName"?/>?

<RequirementDefinitions/>?

<CapabilityDefinitions/>?

<InstanceStates/>?

<Interfaces/>?

</NodeType>

© Frank Leymann

-

_

Node Type

I

~

J

17

Artifact Types

<ArtifactType name="xs:NCName"
targetNamespace="xs:anyURI"?
abstract="yes|no"?
final="yes|no"?>

<Tags>
<Tag name="xs:string" value="xs:string"/> +

</Tags>?

<DerivedFrom typeRef="xs:QName" /> ?

<PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?

\
\
</ArtifactType> VT
\y \
\
\

Invariant properties;
e.g. hash of the artifact

© Frank Leymann

_

18

Artifact Templates

<ArtifactTemplate id="xs:ID" name="xs:string"? type="xs:QName">

<Properties>~ _ Variant properties;
XML fragment T~ e.g. directory where to store

</Properties> ? the artifact

<PropertyConstraints>
<PropertyConstraint property="xs:string"
constraintType="xs:anyURI"> +
constraint ?
</PropertyConstraint> _)
</PropertyConstraints> ?

<ArtifactReferences> L e S) -
<ArtifactReference reference="xs:anyURI"> Relkiale Wil (s Tispreieel 2
" . n pointer into CSAR;
(<Include pattern="xs:string"/> Absolute URI specifies where
| <Exclude pattern="xs:string"(>)* to get the artifact
</ArtifactReference> + N
</ArtifactReferences> ? \\I \Y Can be used to define which files
are collected in case the attribute
</ArtifactTemplate> “references” points to a complete

directory (e.g. in the CSAR)

© Frank Leymann 19

Node Type Implementations

<NodeTypelmplementation name="xs:NCName"
targetNamespace="xs:anyURI"?

nodeType="xs:QName" abstract="yes|no"? final="yes|no"?>

<Tags/>?

<DerivedFrom nodeTypelmplementationRef="xs:QName" /> ?

<RequiredContainerFeatures>
<RequiredContainerFeature feature="xs:anyURI"/> +

</RequiredContainerFeatures> ?

<ImplementationArtifacts/> ?

<DeploymentArtifacts/> ?

</NodeTypelmplementation>

© Frank Leymann

-

B

20

Relationship Types

<RelationshipType name="xs:NCName"
targetNamespace="xs:anyURI"?
abstract="yes|no"?
final="yes|no"?> +

<DerivedFrom typeRef="xs:QName" /> ?

<PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?

<InstanceStates> 4
<InstanceState state="xs:anyURI"> +
</InstanceStates> ?

Relationship Type)

<Sourcelnterfaces.../>?

\- J

<TargetInterfaces.../>?

<ValidSource typeRef="xs:QName"/>? = = ’,’/_’_ Ry NodeType or Requirement Type
<ValidTarget typeRef="xs:QName" /> ? -—-— -
S = />? N ’ e NodeType or Capability Type

: : “ \\
</RelationshipType> NS,

© Frank Leymann 21

Plans

<Plans>
<Plan id="ID"
name="string"?
planType="anyURI"
languageUsed="anyURI">
<PreCondition expressionLanguage="anyURI">?
condition
</PreCondition>
<lInputParameters>
<InputParameter name="xs:string" type="xs:string"
required="yes|no"?/> +
</InputParameters> ?
<QutputParameters>
<OutputParameter name="xs:string" type="xs:string"
required="yes|no"?/> +
</OutputParameters> ?
(<PlanModel> actual plan </PlanModel>
|
<PlanModelReference reference="anyURI"/>)
</Plan>+
</Plans>

© Frank Leymann

Plans

22

Sample: SugarCRM Build Plan

Create

Deploy Deploy VM Deploy OS Deploy
Web Tier (mysQL) (mysQL) mySQL o i
Connect
App to DB
Deploy Deploy VM Deploy OS Eegég’é Deploy St?eaﬁ'lgl{M
DB Tier (Apache) (Apache) Web Sercer PHP Modules e

© Frank Leymann

23

How Plans and Nodes Fit Together

...refers to. .

© Frank Leymann

Deploy
DB Tier

...bound to...

Task of a plan refers to interface of a topology node

Topology node specifies all interfaces offered to
manage it

Interface is bound to a concrete implementation

Implementation already available at providers side, or

Implementation is copied from CSAR (Cloud Service
ARchive), or

A standardized Cloud Interface (laas, PaaS, SaaS) is
used, or ...

24

Implementation Artifacts

®m When a node type implementation
is imported, its implementation
artifacts are deployed

m From that time on, the operations of
the node types can be used in the
particular environment

m Now, tasks of the plans can be
bound to the implementation of
the operations in this environment

m |.e.plansare bound to the
environment (as usual) in which they
,,,,,,,, are executing

Task
in Plan

...refers to..;

ImplArtifacts

...bound to...

© Frank Leymann

25

Agenda

Declarative vs Imperative Processing

26

A Sample Topology

CustomerDB
(RDB)

CustomerDB_on_MyDBMS
% (RDB_HostedOn_RDMBS)

MyDBMS
(RDBMS)

MyBlockStore_For_ MyDBMS
(BlockStore_For_RDBMS) | Attach()

MyBlockStore
(BlockStore)

Install()

Allocate()

© Frank Leymann

27

...And Its Declarative Processing

m |n a declarative mode of

Cus(tggw;rDB processing, the environment
does understand the specific
CustomerDB_on_MyDBMS processing requirements of all
(RDB_HostedOn_RDMBS) types
VIVDBMS m Node types
(RDBMS) nstalll) m Relationship types
m ...
MyBlockStore_For_MyDBMS
(BlockStore_For_RDBMS) | Aﬂlach() m |t further understands the
dependencies of all these types
'\('g'li'fkcskt‘c:roer)e m E.g. that hosted on relationships

Allocate() must be processed before

connected _to relationships

PRO: For provisioning and decommissioning, no plans need to be specified
CON: Very precise definition of all types and their dependencies must be specified

© Frank Leymann

28

A Sample Topology With Plans

- Install Attach oo >@
Storage DBMS Storage
g b Build PIan

CustomerDB
(RDB)

CustomerDB_on_MyDBMS
(RDB_HostedOn_RDMBS)

MyDBMS
(RDBMS)
Install()
MyBlockStore_For_MyDBMS P
(BlockStore_For_RDBMS) I Attach()
MyBlockStore PR o
(BlockStore) Allocate()

© Frank Leymann

...And Its Imperative Processing

Get Install Attach 3 .
: ‘ Build Plan

m |n aimperative mode of

Y processing, the environment
CustomerDB | Y .
(R0E) ‘, ., isnot dependent on a
% cUstomerDB_on_MVDBMi /| precise interpretation of the
(RDB_HostedOn_RDMBS) / :'
types

(ROBNIS) m All that interpretation is
e " done by plans
MyBlockStore_For_MyDBM D ! Y p
(BlockStore_For_RDBMS) Attach()

MyBlockStore Y -
(BlockStore) | Ajjocate()

PRO: No precise definition of all types, their processing, their behavior,... needed
CON: Plans must be specified even for “simple” provisioning and decommissioning needed

30

© Frank Leymann

Declarative vs Imperative: Some Pros and Cons

+

9

Declarative

Simplicity
= No plans modeling
No requirement for additional
middleware
= WFMS,...
Restricted coverage of
orchestrations
= Deployment &
Decommissioning only
Limited support of complex
topologies
Jlnterpreting” cycles, multiple
links between two nodes...

Clear definition of semantics
required

© Frank Leymann

+

+

Imperative

Full coverage of orchestrations
= Licensing, monitoring,...
All workflow features
= Compensation, Humans,...
Additional skills required
Additional middleware
required

Increased maintenance effort
= Plans must be maintained

31

Agenda

TOSCA Simple Profile

aad

32

Goals of the Simple Profile

Make TOSCA consumable by a broader community
This implies:

m Allow to omit language elements that are not needed in
“simple cases”

m E.g. don’t use Relationship Types, Plans
TOSCA Simple Profile becomes fully declarative

m Extend TOSCA with language elements that make simple
cases simpler

m E.g. Template Inputs and Outputs

m Don’t enforce XML
m [Instead, provide a YAML rendering of TOSCA Simple

...and here, latest, we get very religious!
..people can really fight about this rendering issue! ®

© Frank Leymann

33

Node Templates

tosca_definitions_version: tosca_simple_yaml 1 0

description: Template for deploying a single server with predefined properties.

node_templates:
my_server:
type: tosca.nodes.Compute
properties:
compute properties
disk_size: 10
num_cpus: 2
mem_size: 4
host image properties
os_arch: x86_64
os_type: linux
os_distribution: rhel
0s_version: 6.5

© Frank Leymann

34

Inputs and Outputs of a Template

inputs:
Cpus:
type: integer
description: Number of CPUs for the server.
constraints:
-valid_values: [1, 2, 4, 8]

node_templates:
my_server:
type: tosca.nodes.Compute
properties:
Compute properties
num_cpus: { get_input: cpus }
mem_size: 4
disk_size: 10
host image properties
os_arch: x86_32
os_type: linux
os_distribution: ubuntu
os_version: 12.04

outputs:
server_ip:
description: The IP address of the provisioned server.
value: { get_property: [my_server, ip_address | }

©Fre .,

35

Associating Node Templates

node_templates:
mysql:

type: tosca.nodes.DBMS.MySQL

properties:
dbms_root_password: { get_input: my_mysqgl_rootpw }
dbms_port: { get_input: my_mysql_port }

requirements:
- host: db_server

db_server:
type: tosca.nodes.Compute
properties:
omitted here for sake of brevity

© Frank Leymann

36

Requirements

node_templates:
my_app:
type: my.types.MyApplication
properties:
admin_user: { get_input: admin_username }
admin_password: { get_input: admin_password }
db_endpoint_url: { get_ref property: [database, db_endpoint_url] }
requirements:
- database: tosca.nodes.DBMS.MySQL
constraints:
- mysql_version: { greater_or_equal: 5.5}

© Frank Leymann

37

Lifecylce Interface

tosca_definitions_version: tosca_simple_yaml_1 0

description: Template for deploying a single server with MySQL software on top.

inputs:
omitted here for sake of brevity

node_templates:
mysql:

type: tosca.nodes.DBMS.MySQL

properties:
dbms_root_password: { get_input: my_mysgl_rootpw }
dbms_port: { get_input: my_mysql_port }

requirements:
- host: db_server

interfaces:
Lifecycle:

configure: scripts/my_own_configure.sh

db_server:
type: tosca.nodes.Compute
properties:
omitted here for sake of brevity

© Frank Leymann

38

Artifacts

node_templates:
my_db:

type: tosca.nodes.Database.MySQLDatabase

properties:
db_name: { get_input: database_name}
db_user: { get_input: database_user }
db_password: { get_input: database _password }
db_port: { get_input: database_port }

artifacts:
- db_content: files/my_db_content.txt

type: tosca.artifacts.File

requirements:

- host: mysql

© Frank Leymann

39

Relationship Types

node_templates:
wordpress:
type: tosca.nodes.WebApplication.WordPress
properties:
omitted here for sake of brevity
requirements:
- host: apache
- database: wordpress_db
relationship_type: my.types.WordpressDbConnection

relationship_types:
my.types.WordpressDbConnection:
derived_from: tosca.relations.ConnectsTo
interfaces:
Configure:
pre_configure_source: scripts/wp_db_configure.sh

© Frank Leymann

40

Standardized Types

© Frank Leymann

m To help declarative processing succeed very (very!!!)
detailed descriptions of standardized types must be
provided

m Especially the operational semantics of these types must be
very precisely defined, e.g.
m The effects of operations
m The order in which relationship types are to be processed
m How to match requirements
n ...

m And this makes defining your own corresponding types
really hard

m How to define how your custom types are to be processed, i.e.
what the effects of operations are; in which order your relationship
types have to be considered

Again: another source of significant fights! ®

41

Standardized Capabilities - Samples

tosca.capabilities.Endpoint:
properties:
protocol:
type: string
default: http
port:
type: integer
constraints:
- greater_or_equal: 1
- less_or_equal: 65535

tosca.capabilities.DatabaseEndpoint:
derived from: tosca.capabilities.Endpoint

© Frank Leymann 42

Standardized Relationship Types - Samples

tosca.relationships.Root:
The TOSCA root relationship type has no property mappings
interfaces: [tosca.interfaces.relationship.Configure]

tosca.relationships.DependsOn:
derived_from: tosca.relationships.Root
valid_targets: [tosca.capabilities.Feature]

tosca.relationships.HostedOn:
derived from: tosca.relationships.DependsOn
valid_targets: [tosca.capabilities.Container]

tosca.relations.ConnectsTo:
derived from: tosca.relationships.DependsOn
valid_targets: [tosca.capabilities.Endpoint]

© Frank Leymann

43

Standardized Interfaces - Samples

tosca.interfaces.node.Lifecycle:

create:

description: Basic lifecycle create operation.
configure:

description: Basic lifecycle configure operation.
start:

description: Basic lifecycle start operation.
stop:

description: Basic lifecycle stop operation.
delete:

description: Basic lifecycle delete operation.

© Frank Leymann

44

Agenda

Orchestration Engines Architecture

aad

45

TOSCA Environment: Sample High-Level Architecture

y i
i TOSCA i
I Modeling i
i Tool : i""""""""":
e e e e 1
I i Process i
I Engine :
CSAR : !
D e e e e e e o o o e o o o o e e
TOSCA Container
CSAR Processor :__I_/I_o_d_e_I_IQt_e_r_p_rg'Ee_r__i
Definition Artifact Deploy Instance
Manager Manager Manager "t Manager

- ~

>tore L Repositoryj DB

——————————

ode
Repository

© Frank Leymann

Declarative Approach: Component Flow

3 i
1 1
1 1
i TOSCA i
i i
1 1
1 1
1 1

Modeling Tool Femmmm————————— -
| |
................ 1 I
i Process !
! Engine E
CSAR] :
D e e ——— 1
TOSCA ContE\
J/ \.CSAR Processor Model Interpreter
Definition Artifact eploy vee Instance
|Manager |Manager Manager Manager
) o mm——— -
&S (o
Artifact I BTan" [
| Plan le oo
Store i , ! Instance DB
! Repository i
© Frank Leymann [l S —— -

Imperative Approach: Component Flow

rEmm—m—_————————— ':

| | B

i TOSCA | /\
I Modeling Tool |

1 1

1 1

1 1

Process
Engine

/

é TOSCA Container /
S A .
J/ \.CSAR Processor / Mqdel Interpreter !
/
Definition Artifact eploy Instance
|Manager |Manager Manager Manager
< >

Plan

- * ¢ Instance DB

Repository

© Frank Leymann

Deriving Plans from Topologies: The Basic Principle

© Frank Leymann

49

Some More Details — At a Glimpse

= Combined provisioning
GUI DB SMS
i T Dependency Graph
AS DBS BE
N
S
: Provisioning Order
Graph
GUI DB SMS
T 1
AS DBS BE
'\/'

Provisioning
activities for AS

Provisioning
activities for S
[Provisioning H Provisioning Provisioning
activities for DBS activities for DB activities for GUI
[+] [+]
Provisioning Provisioning
activities for BE » activities for SMS

From Ralph Mietzner’s PhD Thesis, 2010

© Frank Leymann 50

At a Glimpse: The Provisioning Subflows

real(c) € Cprovisionable V

p(c) = multipleInst p(c) = multiplelnst

Provision New p(c) # multiplelnst
Component X
|
Subscribe to
X Component

A

Pre-Provisioning \ Deploy Register Runtime
Configuration X Component X Component Configuration
| [| |

Teal(c) € Cprovisioned A
p(c) € {singleConfInst,singleInst}

real(c) = L A
implT (impl(c)) ¢ {providerSupplied, external}

From Ralph Mietzner’s PhD Thesis, 2010

© Frank Leymann 51

At a Glimpse: Provision New Component Subflow

Provision New Component Sub-Process

Receive
Provision Provisioning
Conflrmatlon

1
1 I
\% | :
1 1
Pre- E E Running
Provisioning ! ! Customization
. . 1 1
Customization | provision ' provisioned |Document
Document ! !
! ! N
I 1
i i
I 1
I 1

Component
Flow
(s

e

S

<

il g.

=}

2.

3 [o/¢]

...and so on: the whole generation of “build plans”

can be read in Ralph’s PhD thesis ©

From Ralph Mietzner’s PhD Thesis, 2010

© Frank Leymann 52

Generating Management Plans

m This is more complicated!

Automated
Management Pattern

“t

ETG
Discovery
Framework

Enterprise Declarative
Topology Graph Management
Description Model

T g

Management
Planlet Library

Plan
Generator

Management Planlets

Management Plan

...see Uwe Breitenbicher’s Poster on his PhD thesis ©

© Frank Leymann

53

Turning Declarative into Imperative: Buildtime

TOSCA | Reguest plan generation

Modeling == :

: :

i Process :

Imperatively : Engine i

processed Receive pIans\ i_ __________________ i

CSAR
TOSCA Container \h
CSAR Processor Model Interpreter

Definition Artifact Deploy ‘e Instance
Manager Manager Manager Manager

e e | |[nstance DB

© Frank Leymann

Turning Declarative into Imperative: Runtime

i i

| | 8l
i TOSCA | /\
I Modeling Tool |

1 1

1 1

1 1

Process

Declarative Engine
CSAR CSAR Request Receive
plan generation / plan

TOSCA Container

J/ \.CSAR Processor Mqdel Interpreter
Definition Artifact Deploy e Instance
IManager | Manager Manager Manager

I ees| |nstance DB
1
‘ 55

© Frank Leymann

OpenStack — High Level Architecture Components

Your Applications

C] OPENSTACK

OpenStack Dashboard

Compute Networking Storage

OpenStack Shared Services

Standard Hardware

© By OpenStack

56

Openstack Components

Neutron Nova Cinder Swift
OpenStack Networking: Pluggable, OpenStack Compute: Provision and OpenStack Storage: Object and Block
scalable, API-driven network and IP manage large networks of virtual storage for use with servers and
management machines applications

%

Image Management Orchestration Service Relational Database

Glance Trove

Telemetry Identity Management

Ceilometer Keystone
OpenStack Shared Services

© By OpenStack

OpenStack: Associations Between Components

Dashboard
= o / \
ISIV ;ofs ; Provides i Provides
Provides Ul for Provides Ul for
/ Ul for Ul for
/ Provides \
Auth for

Provide @ -
network @ ;
: ObjectQ
Stores @ I Stores disk J

connectivity =i
images in files in Storage

for Compute

g Image
Provides O O
volumes

for

. Provides
Provides Auth for

Block
Storage

D Auth for i’&"ﬁgf
. Provides
Auth for
Provides Y /
BY A

Auth for
\ http://ken.pepple.info

Identity

© By Wikipedia

Agenda
The Need for Topologies
TOSCA Quick Overview
Declarative vs Imperative Processing
TOSCA Simple Profile
Orchestration Engines Architecture
Summary

A

59

Summary

m Capturing images of an application and bursting it to
the cloud is the wrong way

m You loose most benefits of the cloud

To enable applications to benefit from cloud
properties their topology and management behavior
must be defined

Standards and (open source) implementations exist
for such orchestration of cloud applications

There are two approaches for realizing cloud
orchestration: declarative and imperative

Lot’s of research opportunities in this space

© Frank Leymann

60

Next parts of the Tutorial:

Provisioning Techniques - Johannes
OpenTOSCA Deep Dive - Uwe

aad

The End

