7/14/22

Challenges in Architecting
Web 4.0 Systems

Rick Kazman

University of Hawaii

The State of the Practice in Software Development

The State of the Practice in Software Development

* The boat is leaking but you keep paddling!
 Why?

* The illusion of progress.

* The lack of measurements.

» Design is largely invisible.

Architecture/Design Flaws

e S 7, W

7/14/22

7/14/22

My "Grand Research Challenge"

» Design debt is the most pernicious form of technical debt.
* How to measure the health of an architecture?

 Can this be:
e Automated?
* Empirically justified?
* Repeatable?

Isn't This a Solved Problem?

* Just use existing TD detection tools, e.g.

structure 101 N\ - &
@Mr@ sonarqube \ [l | 2 D”ewwswlmtem

7/14/22

Sadly, no...

* Results of a recent study:

* TD detection tools disagree about basic (seemingly)
objective measures due to different definitions of
fundamental concepts.

* The majority of what is reported by these tools is no more
insightful than LOC.

[Lefever et al. ICSE 2021]

And it Gets Worse...

Existing tools only analyze static relationships.

But, increasingly, systems are being built from dynamic
languages (e.g. Python, Ruby) and as a set of microservices.

We called these DD (Dynamic and Distributed) Systems
These are the architectures of Web 4.0 systems.

How do we analyze these?
And can this be automated, repeatable, etc. ?

7/14/22

Detecting Design Debt in "Traditional" Systems

* Let us begin by reviewing the state of the art in design
debt detection using DV8.

Empirical Basis

v >300 Open Source Projects

v >50 Industrial projects

7/14/22

DV8 Work Flow

® @9

Ll ® 2Ny
£\

Step 1: Data Collection Step 2: Automated Analysis Step 3: Collect Feedback

Code dependency, history, Measurement, flaw detection, Surveys and Interviews

issue records cost calculation with practitioners

Step 1: Data Collection Step 2: Automated Analysis DV8 Tool Suite Step 3: Collect Feedback

3.DL&PC
1. SDSM Generator N 8. Report
acuator Generator
o
[mR 22
0O #w

Depends O«
2 4. Archissue 6. Arch Flaw Cost
Structue DSM Detector Quantification
File Dependency 2. HDSM Generator

Report
\1, Arch Root Debt
5. ArchRoot analysi
_I History DSM Detector
o |
—I > Quantification
Bug Report I

e SN I N N . :

Input files Output files 3rd-party Tool Metrics Flaw OuETT e Input Output

Step 1: Data Collection

v , Dependency information

@ ¥) History information

v , lIssue information

Design Rule Space (DRSpace)

o , A DRSpace is composed of a meaningful subset of a system’s
files and the architectural connections among these files.

* Any subset of files may form a design space

* Architectural connections D e s
* Structural couplings: call, inherit, aggregate, etc.
* Evolutionary couplings

* Implicit or explicit

[Cai et al, TSE 2019]
[Xiao et al, ICSE 2014]

7/14/22

7/14/22

Design Rule Space (DRSpace)

> | Non-trivial software system contain multiple design spaces:
* each feature implemented
* each pattern applied
* each concern addressed

> | Each file can participate in multiple DRSpaces

> | Architectures can be modeled as overlapping DRSpaces

> | We visualize each DRSpace as a Design Structure Matrix (DSM)

Components

Components

Component
Interactions

7/14/22

Communications

ies

t

ivi

Act

Information

SalIAY

7/14/22

Step 2: Automated Architecture Analysis

&>

\OA

Step 2.1 Measure and Monitor Step 2.2: Pinpoint Flaws Step 2.3: Quantify Design Debt

Compare, Contrast, and Monitor Detection and Visualization Costs and benefits

Step 2.1: Measure and Monitor

[Mo et al. ICSE 2016]

Decoupling Level (DL):
an options-based metric, measuring the system’s ability to
generate options

Propagation Cost (PC):

a DSM-based metric, measuring how tightly coupled a system is

7/14/22

Decoupling Level (DL): Rationale

A true module should be
¢ Small
* Independent

A highly modularized system should
* Have large numbers of true modules...
» connected by design rules

[Mo et al. ICSE 2016]

Decou pllng Level (D I_) The more files are clustered into true

modules, the higher the value

1 Ul_java

Upper Layer modules: Jstion_java
* The fewer dependents, the 4 Survey_java
higher the value 5 SaveLoadFile_java
* The smaller the module, the 6 TextFileUl_java
higher the value 7 CommandLineUl_ja
8 Letters_java
9 Match_java

True modules:

* The smaller a true module,
the higher the value

* The more true modules, the

13 EssayAnswer_java
14 Written_java

15 Test_java

higher the value 16 AnswerSheet_java

[Mo et al. ICSE 2016]

11

7/14/22

Decoupling Level (DL) and Propagation Cost (PC)

Cumulative Distribution

Min. PC: 1.8% Min. DL: 14.0%
Max. PC: 72.1% Max. DL: 92.8%
L \ Avg. PC: 20.6% Avg. DL: 58.7% .
, 80t Pt, 80 P,
\gc: 7.7% DL: 74.9%
.

0.8
Data from 129 0.6
projects:
* 108 open source p
. . s N
e 21 industrial PC: 34.1%\ . _ 20%pt,
DL: 45.9%

50 Pt,
\PC: 18.4% DL: 57.4%
\

Percentile (Pt)

DL and PC values

[Mo et al. ICSE 2016]

DL and PC "Health Chart"

Open Source Commercial
DL PC DL PC
Avg 60 20 54 21
Median 58 18 56 20
Max 92 72 93 50 Best DL (93%) is from
Min 14 2 i3 2 Indusy .
20th Pt 47 3 36 \c:\;c;r;tslztr(cl:%) is from
40t Pt 55 14 46 17
60th Pt 66 21 59 24
80th Pt 75 34 65 35
Pt: Percentile

12

7/14/22

DL and PC "Health Chart"

=) Anindustrial project:

DL: 29%, 10th percentile: Confirmed to have severe maintenance difficulty

il
09
08
07
06
05
04
03

02
01 3 10" percentile

(0]
04 06

Decoupling Level

Step 2.2: Flaw Detection

v, We automatically identify 6 types of design flaws
Unstable interface
Modularity violation
Crossing
Improper inheritance
Cliques among files
Package cycles

These flaws are highly correlated with bugs, changes,
and churn

[Mo et al. WICSA 2015]

7/14/22

Flaw Type 1: Unstable Interface

1 config.DatabaseDescriptor dp,44),14
2 utils.FBULtilities 2) ||,40
3 utils.ByteBufferUtil dp, B
4 service.WriteResponseHandler dp,4 (4) dp,22
5 locator.TokenMetadata 6 4 [(5) dp,24
6 locator.NetworkTopologyStrategy p,10 ,6 |dpd '(6) ih,22
7 service.DatacenterWriteResponseHandler |dp,14dp,6 ih,18 ,10 dp,10((7) ,20
8 locator.AbstractReplicationStrategy ,36 |dp,12 dp,22 ag,24 ,22 |dp,20 '(8)

9 config.CFMetaData ,118 |dp,38 dp,10, p A4 ,6 ,16 ,36
10 dht.RandomPartitioner ,12 p,28 dp,20 ,8 4
11 utils.GuidGenerator b p,12 ,4
12 io.sstable.SSTable ,16 |8 |dp4d (12) |,4 |dp,68
13 utils.CLibrary ,12 |dp,14 4 [(13) (12
14 jo.sstable.SSTableReader dp,42),24 |dp,10 ih,68 dp,12((14)
15 cli.CliClient ,52 p,46 dp,26 ,6 ,10
16 locator.PropertyFileSnitch 4 p,6 h
17 dht.OrderPreservingPartitioner dp,18dp,18 dp,12
18 thrift.ThriftValidation dp,4 , p

Flaw Type 2: Crossing

1 pathl.Filel h
2 pathl.File2 h
3 pathl.File3 h
4 path2.Filel h
5 path2. File2 h
6 path2. File3 h
7 path3. Filel h
8 path3. File2 c 4,24d,27@®) ,6 d,5
9 path3. File3 c d,34d,2d,67(9 ,8

10 path4. Filel c d,24d,24d,5d, 8710

11 path4. File2 c "(11)

12 path4. File3 c d,2d,2,3 ,2

13 pathb. Filel c d d d

14

30

Flaw Type 3: Modularity Violation

path1.Bean_javal
path2.Pear_javal

path3 FirstFruit_java

pathd SecondFruit java| Create,
pathd ThirdFruit_java Create,

pathd FourthFruit_java| Create,
paths FifthFruit javal

paths Pear_javal

9 paths Firstluice javal
10 paths.SecondJuice_java|
11 paths SixthFruit javal
12 paths.SeventhFruit javal
paths EighthFruit_java
paths NinethFruit_java
paths.TenthFruit javal

16 paths EleventhFruit javal
17 paths.TwelvethFruit javal
18:aths ThirteenthFruit_javal

19 ath5 FourteenthFruit_javal

20 pathéFirstFood javal
21 path7.SecondFood javal
22 pathd.ThirdFood javal
23 path7.Apple_javal i
24 pathd FourthFood java| Create,
pathd FifthFood java| Create,
path10.FirstFig_java|Cast 'Ise,
path2.SecondFig_javalCe

path1.Bean_javal
path2.Pear_java

path3 FirstFruit_java
pathd.SecondFruit_javal
pathd.ThirdFruit_java

pathd. FourthFrut_javal
paths FifthFruit_javal
paths.Pear_java
path5.FirstJuice_javal

paths SecondJuice javal
path5.SixthFruit_javal
path5.SeventhFruit_java
paths EighthFruit_javal
paths.NinethFruit_javal
paths TenthFruit_javal

16 paths.EleventhFruit_java
17 paths.TwelvethFruit_java
18aths ThirteenthFruit_javal
19ath FourteenthFruit_java
pathé FirstFood javal
path7.SecondFood_javal
path8.ThirdFood_javal
path7.Apple_javal
path.FourthFood_java|
path9.FifthFood_javal
path10.FirstFig_javal

Create , , , ,
Create, , ,
CastUse, ,

path2.SecondFig_java

Cast,Use, ,

elationDataManager

3 CascadeDeleteStrategy
4 JDBCCMRFieldBridge

nsertRelationsCommand
6 JDBCDeleteRelationsCommand
7 JDBCPostCreateEntityCommand
StopComman
9 JDBCRemoveEntityCommand
10 JDBCStartCommand
11 JDBCLoadRelationCommand

13 JDBCStoreManager

14 JDBCAbstractQueryCommand
15 JDBCEJBQLCompiler

16 RelationData

17 RelationPair

18 SLeftJoinCMRNode

19 RelationSet

20 SCMRChainLink

15[16| 17| 18] 19] 20
DB A\ ENERE
ggregates co anc
d e o d e d
5 (18) A1
(19)
11)

7/14/22

15

Sample Flaws from Cassandra

1 cassandra.config.DatabaseDescriptor

2 cassandra.utils.FBULtilities

3 cassandra.utils.ByteBufferUtil

4 cassandra.service.WriteResponseHandler

5 cassandra.locator. TokenMetadata

6 cassandra.locator.NetworkTopologyStrategy
7 cassandra.service.Datacenter\WriteResponseHandler,
8 cassandra.locator.AbstractReplicationStrategy
9 cassandra.config.CFMetaData

10 cassandra.utils.GuidGenerator

11 cassandra.dht.RandomPartitioner

12 cassandra.utils.CLibrary

13 cassandra.io.sstable.SSTable

14 cassandra.io.sstable.SSTableReader

15 cassandra.cli.CliClient

16 cassandra.thrift. ThriftValidation

17 cassandra.dht.OrderPreservingPartitioner

18 cassandra.locator.PropertyFileSnitch

dp,14
,36

1436 |18],

2) [0N IoH K2 |,38
ip,40

Ip,4

Do Design Flaws Really Matter?

(13) apse o [[| |
068](14) g2l |
li5) 48 [[|
o ll.ss [us)]]

Research Question: If a file is involved in greater numbers of architecture flaws,
it is more error-prone/change-prone than average files?

[Mo et al. WICSA 2015]

7/14/22

Data Set

7/14/22

MMMMM

Avro 1.7.6 47
Camel 2.11.1 53
Cassandra 1.0.7 24
CXF 2.7.10 70
HBase 0.94.16 70
Ivy 2.3.0 52
OpenlJPA 2.2.2

PDFBox 1.8.4 46
Wicket 1.5.5 57

Commercial 9

Analysis

46
46
92
21
11
17
13
55
13

1480
17706
6738
27247
14858
3799
6736
1798
18004
6000

630

2326
3645
3400
5032
839

1574
1279
3359
800

145-298
528-1203
419-786
1426-3073
347-2142
418-607
1216-1761
458-589
1099-1549
137-599

We counted the architecture flaws in these 10 projects and compared these to:

* Bug frequency
Bug churn
Change frequency

Change churn

17

7/14/22

Results

Camel-2.11.1 Cassandra-1.0.7
BC_avg | CF_avg BC_avg | CF_avg
7.9 22 . 7.1 1.0
18.5 5.6 . 17.4 4.8
56.6 14.4 . 84.5 21.2
141.5 339 X 245.8 45.7
204.7 . . 3649
0.96 . 0.96
Hadoop-2.2. HBase-0.94.
BC_avg ' BC_avg
12.7 . . . 10.4
24.8 . X 236.7
173.6 . . 418.5
725.1 . 1335.1
2379 . 23704
0.63 0.94
OpenJPA-2.2.2 Pdfbox-1.8.
BC_avg | CF_avg BC_avg
10.0 1.1 . 27.1
311 37 R 359
64.5 7.5 . 64.1
408.6 224 . 495.0
981.0 52.5 X 669.5
0.88 0.90 0.92

Avro-1.7.6

s [or_ave [oC_ave [cr_avg [cc_ove
0.1 3.7 0.5

29.0

0

1 0.4 3.9 0.9 26.2

2 1.6 12.6 5.2 376.7
3 7.9 124.5 21.6 628.5
4 16.5 255.0 33.5 1220.0
PC 0.91 0.89 0.94 0.95

18

7/14/22

More Consequences of Design Flaws

Research Question: If a file is involved in greater numbers of architecture flaws,
it is involved in more security bugs/changes than average files?

[Feng et al. WICSA 2016]

Answer

We counted the architecture flaws in these 11 projects and compared these to:
* Security bug frequency
* Security change frequency

* ..as well as the original measures (bugs, changes, bug churn, change
churn)

7/14/22

e T
Correlation | Correlation Correlation
Avro 0.845 0.923 0.861
Camel 0.956 0.959 0.958
Cassandra 0.830 0.869 0.808
Chrome 0.987 0.988 0.979
CXF 0.896 0.910 0.939
Derby 0.938 0.917 0.897
Hadoop 0.752 0.902 0.862
HBase 0.894 0.932 0.961
httpd 0.710 0.688 0.885
PHP 0.929 0.987 0.923
Tomcat 0.901 0.776 0.920

Step 2.3: Quantification

\ v , Calculate the costs of each root, each flaw and each
(’ type of flaw

<
\

Y
/QB ¥ , Calculate ROI (Return on Investment)

[Kazman et al. ICSE 2015]
[Xiao et al. ICSE 2016]

20

7/14/22

Industrial Experience: ROl Calculation

Penalty Caused by Architecture Debt Refactoring Cost Expected Savings

_ A B € D E I 1 M N

DRSpace |[Norm turrent Norm Current Norm Tot LOC R Norm Exp Norm Exp

DRSpace Leading File |Size Size
Pear.java 139] 119.33§ 166 142.5 1068 839.2| 49,171 3 . 346 20,281

1 efects/Yr |Defects |Ch /Yr |Changes/Yr |Ch d Changes/Yr [LOCCh d
2
3 Apple.java 158 133.83. 63 53.4 607 451.7| 25,603 4 388 22,745
4

[S5 |

Bean.java 65 37.83[72 41.9 429 207.2) 17,807 b d 110 6,429

DRSpace Total .99 237.8 1498 3 X 49,455
7 |Project Total 135,453

8 |Savings 24,808

(1]
11 |Base defect rates |

12 |Base change rates Exp PM save
EER |

13 |Base LOC/file
14 |LOC/PM

Result: “300% ROI in the first year alone!
[Kazman et al. ICSE 2015]

Industrial Experience: Analyzing 8 ABB Projects

v) Using 3 complementary techniques:
* Architecture-level maintainability metrics
* Architecture flaw analysis

* Cost and benefit analysis

v) 8 projects developed at multiple locations (India, USA,
Switzerland) differing in age, domain, and size.

v) We reported the results back to each project and collected feedback

[Mo et al. ASE 2018]

21

Results

Participants of all 8 projects verified that the information provided was useful in closing
the understanding gap with management. They have begun the refactoring process.

All participants said the report gave them quantifiable results with which to judge their
project. The comparison with industrial benchmarks made it clear that maintenance
difficulty caused by degrading architecture is common.

Six of the eight projects planned to or already started refactoring to address the detected
flaws. The project with the lowest DL score is undergoing a major rewrite.

Industrial Experience: Huawei

* Developed a set of architecture measures based on DL and
architecture flaws

* Adopted as a corporate standard
* Now used in over 100 projects
* Quantified architecture debt

* 24 out of 29 projects studied showed a positive correlation between
these measures and productivity

[Wu et al. ECSA 2018]

7/14/22

Industrial Experience: BrightSquid

Analyzed BrightSquid's secure communication platform (6/16 — 5/17)

Identified many areas of architecture debt—the "before" state—and
recommended a refactoring plan to pay down the debt (7/17)

Architecture was refactored (1/18 — 3/18)
Analyzed the "after" state (3/18 — 8/18)

[Nayebi et al. ICSE 2019]

BrightSquid
Results

7/14/22

General information Before After
of files 1713 711
of roots covering 80% of bugs 5 3
of files in roots covering 80% of bugs 296 295
of files covering 80% of bugs 17% 37%
Architectural Metrics Before After
Decoupling level 86% 83%
Propagation cost 6% 6%
Architectural flaws Before After
of cliques 17 10
of files influenced by cliques 71 26
of unhealthy inheritance 60 30
of files influenced by unhealthy inheritance 222 102
of unstable interface 12 8
of files influenced by unstable interface 471 59
of crossings D9 6
of files influenced by crossings 387 47
of package cycles 34 19
of files influenced by package cycles 242 94

23

0N~ WN

Industrial Experience: BrightSquid

The refactoring activities were recorded as 106 change requests, which
consumed 563.8 person hours.

After refactoring, the size of the code base shrunk by 41.5%

The average time needed to close issues before and after refactoring was
reduced by 72%.

The average bug-fixing churn per issue dropped by 2/3: from 102 LOC before
refactoring to 34 LOC after refactoring

The average bug-fixing duration reduced 30%, dropping from 10 days before
to 7 days

But What About DD Systems?

* Web 4.0 architectures are primarily expected to be DD systems.

* Consider this example from a dynamic language:

7/14/22

1 2 3 4 5 6 ¥4 8 1 2 3 4 5 6 74 8
CarElement.java 1) X 1 CarElement.py (1)
Body java x & X 2 Body.py X 7@
Wheeljava X @) % 3 Wheel.py X "3
Engine java X | 4) X 4 Engine.py X | (4)
CarElementVisitor.java X X x B X 5 CarElementVisitor.py | 5)
Carjava X X X X X T 6 Carpy TAEAEREAE: " (6)
CarElementPrintVisitor.java X X X X x H @) 7 CarElementDoVisitor.py X (7)
CarElementDoVisitor java X X X X X F (8) 8 CarElementPrintVisitor.py X (8)

(a) The DSM recovered from Java code (b) The DSM recovered from Python code

48

24

7/14/22

Types Need to be Inferred

* Fortunately, we can resolve most of these "possible
dependencies" using type inference (Duck typing).

Types Need to be Inferred: Preliminary Study

We summarized possible dependencies and explicit
dependencies from 105 Python projects.

On average, 75.72% of all syntactic dependencies are explicit,
and 24.28% are possible dependencies.

Among the possible dependencies, the majority (14.28%) are
"P1" dependencies.

Good news! This means that 90% (75.72%+14.28%) of
syntactic dependencies can be unambiguously determined
using static analysis.

7/14/22

Types Need to be Inferred: Consequences

* On average, a file involved in possible dependencies
requires 30% more maintenance effort than a file involved
in explicit dependencies.

=> maintainability impact imposed by these possible
dependencies is surprisingly high compared with explicit
dependencies.

[Jin et al, 2021]

But What About DD Systems?

* Currently DV8 ingests source code dependencies and co-
change information extracted from a project’s revision history.

* But in distributed, microservice systems, services are typically
created and maintained in separate repositories by distinct
teams.

* Hence, a poorly designed microservice system may be much
harder to analyze and maintain—there is no single place to
analyze.

7/14/22

Research Challenge

* For dynamic systems we need to extract:

Compile-time dependencies, including explicit and possible
dependencies.

APl dependencies among components.

Data-dependency and semantic-dependency.

Build-time dependencies.

Run-time dependencies, which will be extracted from execution logs.

Ownership relations.

Early Results: Team-based Interactions

| 9 (10|11 [12]13[14]15] 16
Infrastructure - 17 18

Team1 -

Team2 -
Team3 -
Team4 -
Teams5 -

Team6 -

Team?7 -
Teams -

Team9 -

Team10 -

Team11 -
Team12 -
Team13 -

Team14 -

unknown -

27

7/14/22

Early Results: Data Coupling

ts-execute-service -
ts-contacts-service -

ts-consign-service -

ts-cancel-service -

ts-admin-user-service -

ts-assurance-service -

ts-config-service -

ts-auth-service -

ts-basic-service -
ts-admin-basic-info-service - ...
ts-admin-order-service -
ts-admin-route-service -

ts-admin-travel-service -

ts-consign-price-service -

Candidate DD System Anti-Patterns

e Team Coupling
Data coupling
Evolutionary Coupling
Crossing API
Retiring Components

Repetitive Components

28

Lessons Learned

* There is enormous design debt in today's software.
* Yes, in your software.

* That's the bad news.

* The good news: we can do something about it.

* More good news: It is possible to automatically and
objectively assess and quantify architecture quality —to
find and fix the debt. And we have reason to believe this
can be extended to DD systems.

Lessons Learned

* And it is possible to bridge the gap. Prior DV8 results were
enthusiastically received by the industrial projects.

* Most projects embarked on major refactorings.

» Several companies have incorporated DV8 into their
development processes/pipelines.

* There is hope for Web 4.0 architectures.

7/14/22

7/14/22

Final Thoughts

You can't manage it if you don't measure it. Quantification is key.

If the measurement is not automated it won't be done, or won't be
repeatable.

Incorporating these techniques into build processes and runtime ensures
rapid feedback with supporting data.

This measurement, detection, and quantification practice leads to
improved architectures.

Results must be accompanied by ROl measures, to aid in adoption.

You can get the software—free for academic use—at: https://archdia.com/

30

References

[Xiao 2022] L. Xiao, R. Kazman, Y. Cai, R. Mo, Q. Feng, “Detecting the Locations and
Predicting the Costs of Compound Architectural Debts”, IEEE Transactions on Software
Engineering, to appear, 2022.

[Lefever 2021] Jason Lefever, Yuanfang Cai, Humberto Cervantes, Rick Kazman,
Hongzhou Fang, “On the Lack of Consensus Among Technical Debt Detection Tools”,
ICSE 2021 SEIP

[Jin 2021] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, Q. Zheng, “Service Candidate
Identification from Monolithic Systems based on Execution Traces”, IEEE Transactions on
Software Engineering, 47:5, May, 2021.

[Mo 2021] R. Mo, Y. Cai, R. Kazman, L. Xiao, Q. Feng “Architecture Anti-patterns:
Automatically Detectable Violations of Design Principles”, IEEE Transactions on Software
Engineering, 47:5, May, 2021.

[Cai 2019] Y. Cai, L. Xiao, R. Kazman, R. Mo, Q. Feng, “Design Rule Spaces: A New Model
for Representing and Analyzing Software Architecture”, IEEE Transactions on Software
Engineering, 45:7, July, 2019.

61

References

[Nayebi 2019] Maleknaz Nayebi, Yuanfang Cai, Rick Kazman, Guenther Ruhe, Qiong Feng, Chris
Carlson, Francis Chew: "A Longitudinal Study of Identifying and Paying Down Architectural Debt*,
ICSE SEIP 2019.

[Feng 2019] Q. Feng, Y. Cai, R. Kazman, D. Cui, T. Liu. H. Fang. "Active Hotspot: An Issue-Oriented
Model to Monitor Software Evolution and Degradation”, ASE 2019.

[Mo 2018] Ran Mo, Will Snipes, Yuanfang Cai, Srini Ramaswamy, Rick Kazman, Martin Naedele:
Experiences Applying Automated Architecture Analysis Tool Suites”, ASE 2018.

[Mo 2016] Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, Qiong Feng, "Decoupling level: a new
metric for architectural maintenance complexity", ICSE 2016: 499-510

[Kazman 2015] Rick Kazman, Yuanfang Cai, Ran Mo, Qiong Feng, Lu Xiao, Serge Haziyev,
Volodymyr Fedak, Andriy Shapochka, "A Case Study in Locating the Architectural Roots of
Technical Debt", ICSE 2015: 179-188

[Xiao 2014] Lu Xiao, Yuanfang Cai, Rick Kazman, "Design rule spaces: a new form of architecture
insight", ICSE 2014: 967-977. 3

7/14/22

