
Managing Big Data
Graphs

Eνaggelia Pitoura
Computer Science and Engineering Department

University of Ioannina, Greece
http://www.cs.uoi.gr/~pitoura

1 http://dmod.cs.uoi.gr

Short version of a presentation given at SummerSOC, Crete, July 3, 2014

Talk Outline

Why?
What?
How?

2 July 2014@SOC summer school

Very large body of current research, just an
overview

3

Why graphs?

3 July 2014@SOC

4

Social networks

4 July 2014@SOC

>$10B revenue

>0.5B users

5

Social network graphs

5 July 2014@SOC

• A social network is usually modeled as a graph

– A node → a user/ an actor

– An edge → a relationship
 or interaction

Information/Media networks

 Nodes: Twitter users

 Edges: Follows/conversations

Communication networks

• Nodes: People

• Edges: email exchange, phone calls

The Internet

 Nodes: Internet nodes

 Edges: communication between nodes

Financial Networks

 Nodes: Companies

 Edges: relationships (financial, collaboration)

Biological networks

 Nodes: Proteins

 Edges: interactions

 Nodes: metabolites, enzymes

 Edges: chemical reactions

Information networks

 Nodes: Web Pages

 Edges: Links

9

More graphs

9 July 2014@SOC

Food Web (what-eats-what

IR: bipartite graphs of documents and terms

Linked open data

10

Diversity of models

10 July 2014@SOC

 Scale free graphs
 Power law degree distribution

 Community structure

 Small world

11

Why graphs?

11 July 2014@SOC summer school

 Ranking nodes and information
 Locate information

 Identify influential people
 Find communities
 Model complex dependencies
 Meaningful recommendations
 Link prediction

12

Why graphs?

12 July 2014@SOC summer school

Understanding information cascades and virus
contagion
 “viral’ marketing
 web-log (‘blog’) news propagation
 Decease propagation

Event detection

Computer network security: email/IP traffic and
anomaly detection

Talk Outline

Why?
What?
How?

13 July 2014@SOC

14

What kind of analysis?

14 July 2014@SOC

15 15
July 2014@SOC summer school

Core operations?

Offline graph analytics
o PageRank, betweenness
o Triangle counting
o Clustering, community detection
o Bipartite matching

Online query processing
o Reachability, distance query
o Subgraph matching query
o SPARQL query
o …

16 16
July 2014@SOC summer school

Core operations?

Plus
Modeling and generation, visualization, interactive
exploration …

Macroscopic or global: traversal of the whole graph

Microscopic or node centric (egonet): neighbors of
specific nodes

Structure
Attribute or Label constraints

17 17
July 2014@SOC summer school

Core operations?

Let us see two examples

1. offline + global and
2. online + global

Both pure structural

18 18
July 2014@SOC summer school

An (offline) example: Betweeness and
clustering

 Centrality Analysis:

 Find out the most important (central) nodes in a graph

 Commonly-used centrality Measures

 Degree Centrality

 Closeness Centrality

 Betweenness Centrality

 PageRank

 Eigenvector Centrality

Betweenness Centrality

 For a node: Counts the number of shortest paths that
pass through one node

The number of shortest paths between s and t

The number of shortest paths between s
and t that pass vi

19

Blue (max)
Red (0)

Betweenness Centrality Example

 Nodes with high betweenness are important in
communication and information diffusion

Betweenness and Graph Partitioning

Identity densely connected subgraphs

Co-authorship network of physicists
and applied mathematicians

Karate club

34 president -- 1 instructor

Edge Betweenness

Betweenness of an edge (a, b)

Edges that have a high probability to occur on a randomly
chosen shortest path

),(_#

),(),(_#
),(bt

, yxpathsshortest

bathroughyxpathsshortest
ba

yx



An example

3x11 = 33

7x7 = 49

1x12 = 12

1

Girvan and Newman
clustering

1. The betweenness of all edges in the network is
calculated

2. The edge with the highest betweenness is
removed.

 If this separates the graph -> partition.

3. The betweenness of all edges affected by the
removal is recalculated.

Steps 2 and 3 are repeated until no edges remain.

Girvan Newman method: An example

Betweenness(7, 8)= 7x7 = 49

Betweenness(3, 7)=Betweenness(6-7)=Betweenness(8, 9) = Betweenness(8, 12)= 3X11=33

Betweenness(1, 3) = 1X12=12

3x11 = 33

7x7 = 49

1x12 = 12

1

Girvan Newman method: An example

Betweenness(3,7)=Betweenness(6,7)=Betweenness(8-9) = Betweenness(8,12)= 3X4=12

Betweenness(1, 3) = 1X5=5

Girvan Newman method: An example

Betweenness of every edge = 1

Girvan Newman method: An example

Girvan and Newman

34 president -- 1 instructor
 Correct but node 9 (attached it to 34)

 why? 3 weeks away from getting a black belt

Computing Betweenness

1.Perform a BFS starting from each node A
2.Determine the shortest path from A to

each other node
3.Based on these numbers, determine the

amount of flow from A to all other nodes
that uses each edge

Repeat the process for all nodes
Sum over all BFSs

Step 1

Initial network BFS on A

Step 2

Count how many shortest paths from A to a specific node

Level 1

Level 3

Level 2

Level 4
Top-down

Step 3

The portion of the shortest paths to a node that go
through the edge

Example H-J: ½ for K and ½ for H -> 1

An (offline) example: Betweeness and
clustering

 What is the core operation?
 Is it parallelizable?
 Sampling

35 35
July 2014@SOC summer school

An (online) example: 2HOP index

 In between, reachability indexes

Given a directed graph G(V, E) and two nodes u and v a
reachability query asks if there exists a path from u to v in G

Reachability on directed graphs can be reduced to reachability

on directed acyclic graphs (DAGs)

36

An example: 2HOP index

July 2014@SOC summer school

 Each node represents a
strongly connected
component of the original
graph,

 an edge if one component can
reach another.

37

An example: 2HOP index

July 2014@SOC summer school

In the transitive closure, for each node u we have the full list of
nodes that are reachable from it

Instead of keeping the whole transitive closure, compression

Instead:
For each node in G, a 2 hop-code or label (Lin(u), Lout(u)) such
that
For each pair of nodes u, v in G, v is reachable from u, if and
only if,
 Lin(u)∩ Lout(v) ≠ ∅

38 38 July 2014@SOC

Variety of graph analysis task

Can we build just one system?

39 39 July 2014@SOC

Graph data are different

 Poor locality which means that random access
is often required)
 Accessing the neighbors of a node requires
 “jumping” around independently of how we
 represent the graph .

 Graph structure driven computation

Talk Outline

Why?
What?
How?

40 July 2014@SOC summer school

41

Systems

41 July 2014@SOC

42

Overview

42 July 2014@SOC summer school

Systems for non-graph data
o RDBMS
o MapReduce

Systems for graph data
o Graph database, e.g. Neo4j, HypergraphDB
o Graph analytics system, e.g. Pregel, Trinity, GraphLab
o Matrix-based graph processing system, e.g. Pegasus

43

RDBMS: traverse graphs using joins

43 July 2014@SOC summer school

id name value …

1 N1

2 N2

3 N3

4 N4

5 N5

6 N5

…

src dst

1 2

2 6

1 4

1 6

3 5

…

V: Vertex Table
E: Edge Table

SELECT *
FROM V
LEFT JOIN E ON V.ID = E.dst
WHERE E.src = 1;

Get neighbors of N1

Get neighbors of N1 at
distance 2?

44

RDBMS

44 July 2014@SOC summer school

 Widespread use
 Strong consistency guarantees via ACID

transactions
 Support complex queries

 Standard query language: SQL
 May be useful when not pure structural

to filter out parts of the graph based on
attributes

45

MapReduce

45 July 2014@SOC summer school

General purpose data processing platform
optimized for offline analytics on large
data partitioned on hundreds of machines
(no online query support)

46

MapReduce

46 July 2014@SOC summer school

 The MapReduce data model is not a native graph
model

 Graph algorithms cannot be expressed intuitively

 Graph processing is inefficient on MapReduce
o Intermediate results of each iteration need to be

 materialized
o Entire graph structure need to be sent over the network

at each iteration, unnecessary data movement

47

Pregel: Think like a vertex

47 July 2014@SOC summer school

Pregel: A large-scale distributed framework for
graph data developed by Google

Giraph: open-source implementation of Pregel

Graph computation is modeled as many
supersteps
 Each vertex reads messages sent in previous

the previous superstep
 Each vertex performs computation in parallel
 Each vertex can send messages to other

vertices in the end of an iteration

The Graph-Parallel Abstraction

A user-defined Vertex-Program runs on each vertex

Graph constrains interaction along edges

– Using messages (e.g. Pregel)

– Through shared state (e.g., GraphLab)

Parallelism is achieved by running multiple vertex programs
simultaneously

48

Termination

• Algorithm termination is based on every
vertex voting to halt

• The algorithm as a whole terminates when
all vertices are simultaneously inactive

Implementation of Pregel

• Basic architecture (similar to MapReduce)
– Master ← coordinates computation

– Workers ← perform computation

• Basic stages

1. The master partitions the graph

2. The master assigns the input to each Worker

3. Supersteps begin at Workers

4. The master can tell Workers to save graphs

51

Pregel-like Parallelism

51 July 2014@SOC summer school

 Bulk synchronous parallel model
 Exploits fine-grained parallelism at node level

(+) does not move graph partitions over the network,
only messages at the end of each iteration
(-) not many graph algorithms can be implemented
using vertex-based computation model elegantly

52

Pegasus: matrix

52 July 2014@SOC summer school

An open source large graph mining system
Implemented on Hadoop

Key Idea

Convert graph mining operations into
iterative matrix-vector multiplication

A graph with 𝑛 vertices is represented by an 𝑛×𝑛 matrix
 each cell (𝑖, 𝑗) in the matrix represents an edge (𝑠𝑟𝑐=𝑖, dst=𝑗)

www.cs.cmu.edu/~pegasus

Pegasus
• A matrix represents a graph

– Each column or row represents a node

–𝑚𝑖,𝑗 represents the weight of the edge from i to j

• A vector represents some value of the nodes,
e.g., PageRank

Main Idea – Generalized Iterative Matrix-
Vector Multiplication (GIM-V)

• The matrix-vector multiplication 𝑀 × 𝑣 = 𝑣′
where 𝑣𝑖

′ = 𝑚𝑖,𝑗𝑣𝑗
𝑛
𝑗=1

• Three operations in the above formula
– combine2: multiply 𝑚𝑖,𝑗 and 𝑣𝑗

– combineAll: sum 𝑛 multiplication results for a
node i

– assign: overwrite the previous value of 𝑣𝑖 with a
new result to make 𝑣𝑖′

Generalized Iterative Matrix-Vector
Multiplication (GIM-V)

• The operator ×𝐺 is defined as:
– 𝑣′ = 𝑀 ×𝐺 𝑣, where 𝑣𝑖

′ = assign(𝑣𝑖, combineAlli({𝑥𝑗 |
𝑗=1, …, 𝑛 and 𝑥𝑗 = combine2(𝑚𝑖,𝑗, 𝑣𝑗)}))
• combine2(𝑚𝑖,𝑗, 𝑣𝑗): combine 𝑚𝑖,𝑗 and 𝑣𝑗
• combineAlli(𝑥1, … , 𝑥𝑛): combine all the results from

combine2() for a node i
• assign(𝑣𝑖, 𝑣𝑛𝑒𝑤): decide how to update 𝑣𝑖 with 𝑣𝑛𝑒𝑤

• ×𝐺 is applied until a convergence criterion is met
• Customizing these three functions implements

several graph mining operations

GIM-V and PageRank (skipped)

GIM-V and Connected Components
(skipped)

57

Pegasus

57 July 2014@SOC summer school

Matrix based graph mining platform

(+) Support large scale graphs
(-) Many graph operations cannot be modeled
by matrix-vector multiplications
(-) Not a very natural programming model

Graph Database

Data model

• A property graph: nodes and directed edges

• Node and edges can have properties

– Properties are key-value pairs

• Keys are strings; values are arbitrary data types

• The basic operation is a traversal

– It starts from a given node and explores portions
of the graph based on the query

Neo4j

• Neo4j is an open source graph database

• Cypher is a graph query language
implemented in Neo4j

Cypher

• The most basic Cypher query (traversal)
includes the following structure:

– Starting node(s)
• used to limit the search to certain areas of the graph

• Found via node ID, list of node IDs, or by an index lookup

– Pattern matching expression
• for examining patterns in relationships

• w.r.t. the starting node(s)

– Return expression
• based on variables bound in the pattern matching

• defines retrieval set of nodes, relationships, or properties of nodes
or relationships

Graph Databases

(+) Powerful data model
(+) Fast for connected data

(-) How to partition/distribute
sharding on key-value and key-document on
NoSQL databases, difficult for graph
databases
Memory sharding

Systems

No consensus on a single model

Partition is a big issue when it comes
to distribution

62 July 2014@SOC summer school

Our own work

Graph evolve over time

 How to query graph history (indexes)
 Diffusion (propagation of information in

graphs)

Why?
Graphs are ubiquitous -- many useful
applications
What?
Variety of problems for online and offline
analysis
How?
Many graph-oriented parallel processing
systems and databases

64 July 2014@SOC summer school

Summary

65 July 2014@SOC summer school

Take-away message

Very active area of research

Many research problems and
opportunities for most computer science
fields

Graphs as a Service?

66

Thank you!

66 July 2014@SOC

