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Overview

Agenda

▪ Introduction: Industrial Analytics & AI

▪ Data Challenges

▪ Data Ecosystem for Industrial Enterprises
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Industrial Data
Introduction
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• Data are diverse: structured, semi-structured or unstructured, batch or stream, operational or process-related, …

• Data are valuable: insights for process optimization, product enhancement, new services, …

[Frost & Sullivan 2019]

[https://aecc.org/driving-data-to-deliver-addressing-the-connected-vehicle-data-challenge/]
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[https://www.statista.com/statistics/1017863/

worldwide-iot-connected-devices-data-size]

Data volume of 

IoT connected devices worldwide 

2019 and forecast 2025

“1 TB of production data

is created daily by the

average factory, but less

than 1% of that data is

actually being analyzed

by manufacturers.”

Vehicle to Edge Data Transmission

▪ Edge data offloading scenarios for autonomous 

driving vehicles

▪ High: 5.17 TB/hr/vehicle

▪ Mid-Range: 0.945 TB/hr/vehicle

▪ Low: 0.383 TB/hr/vehicle

▪ Includes: Total video, CAN/GPS/IMU and 

in-vehicle compute data

▪ Lower range is closer to connected vehicle levels
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Industrial Analytics & AI (I)
Introduction
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Defining “Industrial Analytics”

• Data analytics for industrial value creation

• Industrial value creation as application domain

of data analytics

• Sometimes also called “Industrial Intelligence” 

or “Industrie 4.0 Analytics”

Note: industrial analytics refers to the entire 

industrial value chain, not only single phases 

such as production.

[Gröger 2022]
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Industrial Analytics & AI (II)
Introduction

5

Data Analytics

In-depth understanding and discovery of actionable insights from data, comprising descriptive (e.g. reporting), diagnostic, predictive 

(e.g. machine learning) and prescriptive analytics.

Artificial Intelligence (AI)

Fuzzy term referring to the ability of a machine to perform cognitive functions. Differentiated are model-driven/deductive AI, e.g., 

expert systems, and data-driven/inductive AI, e.g. machine learning.

[Cao 2017, Everitt/Hutter 2018]  

Data Analytics AI

Machine Learning 

& Data Mining

• Reporting

• Exploration

• Stream Analytics

• … incl. Deep 

Learning

• Expert Systems

• Decision Support 

Systems

• …

Data-Driven AI

Note: In the following, we focus on data analytics, especially data-driven AI.
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Industrial Analytics Use Cases (Examples)
Introduction
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Predictive Machine Maintenance Predictive Process Quality Engineering in the Loop

Goal Optimizing machine maintenance Reducing scrap in manufacturing
Improving product design based on 

real-world product usage

Object of Analysis Machine Process Product

Product Lifecycle 

Phases

Production system development, 

production execution

Production system development, 

production execution

Product development, operations & 

service

Source Data Maintenance data, machine data
Material data, quality data, process 

data, machine data

Engineering simulation data, master 

data, product usage data

Analytics Types Predictive Diagnostic, predictive Descriptive

Techniques Data mining & machine learning Data mining & machine learning Reporting & OLAP, exploration

Challenges in 

Practice

Data availability, data quality, 

imbalanced data
Data integration, imbalanced data Data availability, data quality

[Gröger 2022]



Dr.-Ing. Christoph Gröger | SummerSoC'22 | 2022-07-08

© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Current State: Insular Analytics & AI
Data Challenges
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• Many use cases, e.g., predictive maintenance, per se not new and known for years

• Challenge lies in concrete implementation in individual case

• In industry practice, each implementation is typically case-specific and tailored:

• Same source data, e.g., ERP data, are extracted multiple times creating high load on business-critical 

source systems

• Different data models are developed for the same conceptual data entities, such as ‘machine’

• Heterogeneous data models and different data lake storage technologies used lead to heterogeneous 

data pipelines for pivoting the same type of source data, e.g., MES tables with sensor data

• Case- and user-specific analytics tools are used to generate insights

Result: insular analytics & AI

In industry practice, analytics is done in isolated islands leading to a heterogeneous data 

landscape with data preparation accounting for 60-80% of use case implementation efforts.

[Gröger 2021]
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Current State: Heterogeneous Data Landscape
Data Challenges
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[Modified from Gröger 2021]
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Data Challenges in Practice
Data Challenges
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Data challenges of industrial analytics go far beyond ensuring data quality

• Data management: processing, provisioning and controlling data throughout its lifecycle 

• Data democratization: facilitating the use of data by everyone in an organization (taking into account data security and data privacy)

• Data governance: organizational structures to treat data as an enterprise asset, especially roles, decision rights and responsibilities 

Remark: ensuring data quality is a general prerequisite (not detailed here)

Data Management Challenge

Comprehensive data management for AI in a 

heterogeneous enterprise data landscape:

• Data Modelling

• Metadata Management

• Data Architecture

Data Governance Challenge

Defining roles, decision rights and responsibilities 

for the effective and compliant use of data for AI:

• Data Ownership

• Data Stewardship

Data Democratization Challenge

Making all kinds of data available for AI 

for all kinds of end users:

• Data Provisioning

• Data Engineering

• Data Discovery & Exploration

Data Quality Challenge (not detailed here)

[Gröger 2021]
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Data Management Challenge
Data Challenges
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Managing data in a heterogeneous and polyglot data landscape

• Data modelling

• No common data modelling approaches on how to model data across the data landscape 

complicating data integration and reuse of data and data pipelines

• Different data modelling techniques, e.g., data vault or dimensional modelling, used for the same kinds of data

• Metadata management

• No overall metadata management to maintain metadata across the data landscape resulting in complex data usage for analytics

• Technical metadata, e.g., names of columns and attributes, are mostly stored in system-internal data dictionaries of 

individual storage systems and are not generally accessible, thus data lineage and impact analyses are hampered

• Business metadata on the meaning of data, e.g., the meaning of KPIs, are often not systematically managed

• Data architecture

• No overarching data architecture that structures the data landscape resulting in high development and maintenance costs

• Enterprise data architecture to orchestrate the various isolated data lakes missing:

No common zone model across all data lakes complicating data integration and exchange; 

integration of the existing enterprise data warehouse containing KPIs unclear

• Platform data architecture to systematically design a data lake is lacking

[Gröger 2021]
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Data Democratization Challenge
Data Challenges
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Making all kinds of data available for all kinds of end users

Data
Provisioning

Data
Engineering

Data Discovery &
Exploration

Technically connecting new 
source systems and 
extracting selected source 
data

Activities:

Modelling, integrating and 
cleansing of data

• Incomplete metadata on 
quality and business 
meaning of data

•Low-automation approval 
processes for data usage

Factors limiting 
democratization:

Description:

• Incomplete metadata on 
source systems 

•Use of complex script-
based frameworks

•Need for dedicated IT 
projects

•High coordination effort

User-driven investigation 
and finding of relevant 
data 

[Gröger 2021]
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Data Governance Challenge (I)
Data Challenges
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Basic data roles

• Data owners

• Have overall legal and commercial responsibility for certain kinds of data, e.g. all data on a certain product 

• Assigned to the business, not the IT

• Responsible for quality, security and compliance of data from a business point of view

• Data stewards

• Manage data on behalf of data owners

• Responsible for realizing necessary policies and procedures from a business and from a technical point of view

• Data engineers

• Responsible for developing data pipelines to provide the data basis for further analyses by integrating and cleansing of data

• Data scientists

• Focus on the actual analysis of data by feature engineering and applying various data analytics techniques, 

e.g. different data mining algorithms, to derive insights from data

[Abraham et al. 2019, Lyon/Mattern 2016]
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Data Governance Challenge (II)
Data Challenges
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Data governance challenge: defining roles, rights and responsibilities for the effective and compliant use of data 

• No uniform data ownership organization: heterogeneous and overlapping data ownership structures, e.g., when data ownership is

organized by business function in source systems and by business unit in the data lake

• No overall data stewardship organization to establish common policies and standards for data: 

data stewardship established mainly for master data, further data categories missing

• Analytics roles (data scientist, data engineer) overlap with classical data governance roles

[Gröger 2021]
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Overview
Data Ecosystem for Industrial Enterprises
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[Gröger 2022]

Socio-technical, loosely coupled, self-organizing system for the sharing of data
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