
Distributed Persistent Objects

June 27, 2023

University of Stuttgart, IPVS

Lukas Epple

Motivation Persistent Objects Distributed Persistent Objects

Everyone uses databases.

Why?

Consistent access to persistent data

Database =⇒ Transactional data

Distributed Persistent Objects Lukas Epple 1 / 31

Motivation Persistent Objects Distributed Persistent Objects

Are databases always the best solution?

Let’s take a step back!

Database ?⇐= Transactional data

Distributed Persistent Objects Lukas Epple 1 / 31

Motivation Persistent Objects Distributed Persistent Objects

Motivation

• can we integrate the persistency into the programs?
• same object representation
• avoid query processing
• developers are already familiar with object-oriented data access

Distributed Persistent Objects Lukas Epple 2 / 31

Persistent Objects

Motivation Persistent Objects Distributed Persistent Objects

Goal: Persistent Objects

• persistency
• objects of any kind
• transactional behavior
• speed

Distributed Persistent Objects Lukas Epple 3 / 31

Motivation Persistent Objects Distributed Persistent Objects

First Step: Persistent Storage Hardware

Perfect hardware would be
• cheap
• fast
• persistent
• durable

Distributed Persistent Objects Lukas Epple 4 / 31

Motivation Persistent Objects Distributed Persistent Objects

Intel® Optane™

• Released on March 19, 2017
• SSD and DIMM

Random Write Intel Optane DRAM SSD

Latency 0.17/0.3 0.08 60 [µs]
Bandwidth 1.4 5.6 0.2 [GB s−1]
Durability 360 - 0.7 [PBW]

Distributed Persistent Objects Lukas Epple 5 / 31

Motivation Persistent Objects Distributed Persistent Objects

NVRAM in the Memory Hierarchy

Distributed Persistent Objects Lukas Epple 6 / 31

Motivation Persistent Objects Distributed Persistent Objects

How does Intel® Optane™ work?

Distributed Persistent Objects Lukas Epple 7 / 31

Motivation Persistent Objects Distributed Persistent Objects

How does Intel® Optane™ work?

Distributed Persistent Objects Lukas Epple 7 / 31

Motivation Persistent Objects Distributed Persistent Objects

Writing

t

V

t

V

Distributed Persistent Objects Lukas Epple 8 / 31

Motivation Persistent Objects Distributed Persistent Objects

Writing

t

V

t

V

Distributed Persistent Objects Lukas Epple 8 / 31

Motivation Persistent Objects Distributed Persistent Objects

Writing

t

V

t

V

Distributed Persistent Objects Lukas Epple 8 / 31

Motivation Persistent Objects Distributed Persistent Objects

Writing

t

V

t

V

Distributed Persistent Objects Lukas Epple 8 / 31

Motivation Persistent Objects Distributed Persistent Objects

Reading

t

V
0

1

Distributed Persistent Objects Lukas Epple 9 / 31

Motivation Persistent Objects Distributed Persistent Objects

Reading

t

V

0

1

Distributed Persistent Objects Lukas Epple 9 / 31

Motivation Persistent Objects Distributed Persistent Objects

Reading

t

V
0

1

Distributed Persistent Objects Lukas Epple 9 / 31

Motivation Persistent Objects Distributed Persistent Objects

Reading

t

V
0

1

Distributed Persistent Objects Lukas Epple 9 / 31

Motivation Persistent Objects Distributed Persistent Objects

But is it that simple?

Optane seems to be that magic memory!
• latency comparable to DRAM
• bandwidth almost as high as DRAM
• more durable than SSDs

Is that enough?

Remaining problems:
• Optane only guarantees atomic write for 8 Bytes
• Working with data on persistent storage is not trivial

Distributed Persistent Objects Lukas Epple 10 / 31

Motivation Persistent Objects Distributed Persistent Objects

But is it that simple?

Optane seems to be that magic memory!
• latency comparable to DRAM
• bandwidth almost as high as DRAM
• more durable than SSDs

Is that enough?

Remaining problems:
• Optane only guarantees atomic write for 8 Bytes
• Working with data on persistent storage is not trivial

Distributed Persistent Objects Lukas Epple 10 / 31

Motivation Persistent Objects Distributed Persistent Objects

Objects on Persistent Storage: Pitfalls

1 struct A {
2 int a;
3 int b;
4 int c;
5 }
6

7 A *obj = nv_alloc(sizeof(A));

1 struct B {
2 int d;
3 int e;
4 std::vector <int > f;
5 }
6

7 B *obj = nv_alloc(sizeof(B));

NVRAMstruct A

a b c

struct B

d e f

RAM

[0] [1] . . .

f.data()

Distributed Persistent Objects Lukas Epple 11 / 31

Motivation Persistent Objects Distributed Persistent Objects

Objects on Persistent Storage: Pitfalls

1 struct A {
2 int a;
3 int b;
4 int c;
5 }
6

7 A *obj = nv_alloc(sizeof(A));

1 struct B {
2 int d;
3 int e;
4 std::vector <int > f;
5 }
6

7 B *obj = nv_alloc(sizeof(B));

NVRAMstruct A

a b c

struct B

d e f

RAM

[0] [1] . . .

f.data()

Distributed Persistent Objects Lukas Epple 11 / 31

Motivation Persistent Objects Distributed Persistent Objects

Objects on Persistent Storage: Pitfalls

1 struct A {
2 int a;
3 int b;
4 int c;
5 }
6

7 A *obj = nv_alloc(sizeof(A));

1 struct B {
2 int d;
3 int e;
4 std::vector <int > f;
5 }
6

7 B *obj = nv_alloc(sizeof(B));

NVRAMstruct A

a b c

struct B

d e f

RAM

[0] [1] . . .

f.data()

Distributed Persistent Objects Lukas Epple 11 / 31

Motivation Persistent Objects Distributed Persistent Objects

Objects on Persistent Storage: Pitfalls

1 struct A {
2 int a;
3 int b;
4 int c;
5 }
6 A *obj = nv_alloc(sizeof(A));
7

8 obj ->a = 5;
9 obj ->b = 6;

What if the computer crashes between
line 8 and 9?

NVRAMstruct A

a b c

Distributed Persistent Objects Lukas Epple 12 / 31

Motivation Persistent Objects Distributed Persistent Objects

We need Software that Manages Persistent Storage

Intel created the libpmemobj-cpp library for Optane
• provides transactional behavior with undo logs, and
• persistent data structures

But there are problems:
• we want no restrictions on the objects: Intel’s data structures too limited
• translation between persistent and volatile objects
• Optane was discontinued in 2022: we need a technology-independent solution

Distributed Persistent Objects Lukas Epple 13 / 31

Motivation Persistent Objects Distributed Persistent Objects

We need Software that Manages Persistent Storage

Intel created the libpmemobj-cpp library for Optane
• provides transactional behavior with undo logs, and
• persistent data structures

But there are problems:
• we want no restrictions on the objects: Intel’s data structures too limited
• translation between persistent and volatile objects

• Optane was discontinued in 2022: we need a technology-independent solution

Distributed Persistent Objects Lukas Epple 13 / 31

Motivation Persistent Objects Distributed Persistent Objects

We need Software that Manages Persistent Storage

Intel created the libpmemobj-cpp library for Optane
• provides transactional behavior with undo logs, and
• persistent data structures

But there are problems:
• we want no restrictions on the objects: Intel’s data structures too limited
• translation between persistent and volatile objects
• Optane was discontinued in 2022: we need a technology-independent solution

Distributed Persistent Objects Lukas Epple 13 / 31

Motivation Persistent Objects Distributed Persistent Objects

What do we need?

• Persistent storage
• Memory mapped files for technology-independence
• Translation between volatile and persistent data structures
• Object Cache in the volatile RAM for accelerated reads
• Transactional writes

Distributed Persistent Objects Lukas Epple 14 / 31

Motivation Persistent Objects Distributed Persistent Objects

Object Organization

Object Cache

RAM T0 T1 T2 T3 T4 T5 T6 T7

Persistence Manager

NVRAM T0 T1 T2 T3 T4 T5 T6 T7

Distributed Persistent Objects Lukas Epple 15 / 31

Motivation Persistent Objects Distributed Persistent Objects

Transaction Execution

1 1 T . . .

O
k

bi
t

Ve
rs

io
n

Initial memory layout

Execute f on T in cache

1 1 T 0 2 f (T) . . .Copy to NVRAM

1 1 T 1 2 f (T) . . .Commit: Set OK bit

. . . 1 2 f (T) . . .Free memory

Distributed Persistent Objects Lukas Epple 16 / 31

Motivation Persistent Objects Distributed Persistent Objects

Transaction Execution

1 1 T . . .

O
k

bi
t

Ve
rs

io
n

Initial memory layout

Execute f on T in cache

1 1 T 0 2 f (T) . . .Copy to NVRAM

1 1 T 1 2 f (T) . . .Commit: Set OK bit

. . . 1 2 f (T) . . .Free memory

Distributed Persistent Objects Lukas Epple 16 / 31

Motivation Persistent Objects Distributed Persistent Objects

Transaction Execution

1 1 T . . .

O
k

bi
t

Ve
rs

io
n

Initial memory layout

Execute f on T in cache

1 1 T 0 2 f (T) . . .Copy to NVRAM

1 1 T 1 2 f (T) . . .Commit: Set OK bit

. . . 1 2 f (T) . . .Free memory

Distributed Persistent Objects Lukas Epple 16 / 31

Motivation Persistent Objects Distributed Persistent Objects

Transaction Execution

1 1 T . . .

O
k

bi
t

Ve
rs

io
n

Initial memory layout

Execute f on T in cache

1 1 T 0 2 f (T) . . .Copy to NVRAM

1 1 T 1 2 f (T) . . .Commit: Set OK bit

. . . 1 2 f (T) . . .Free memory

Distributed Persistent Objects Lukas Epple 16 / 31

Motivation Persistent Objects Distributed Persistent Objects

Transaction Execution

1 1 T . . .

O
k

bi
t

Ve
rs

io
n

Initial memory layout

Execute f on T in cache

1 1 T 0 2 f (T) . . .Copy to NVRAM

1 1 T 1 2 f (T) . . .Commit: Set OK bit

. . . 1 2 f (T) . . .Free memory

Distributed Persistent Objects Lukas Epple 16 / 31

Motivation Persistent Objects Distributed Persistent Objects

Until now: Local Objects

Computer

a b c d

This gives us persistency and
transactions but we are limited in
capacity, access, . . .

Distributed Persistent Objects Lukas Epple 17 / 31

Distributed Persistent Objects

Motivation Persistent Objects Distributed Persistent Objects

Distributed Persistent Objects

N1

a b c d

N2

e f g h

With Distributed Persistent Objects we need a way to
• reference non-local objects,
• select subsets of all objects,
• query for objects, and
• execute transactions on sets of objects

Distributed Persistent Objects Lukas Epple 18 / 31

Motivation Persistent Objects Distributed Persistent Objects

Distributed Persistent Objects

N1

a b c d

N2

e f g h

With Distributed Persistent Objects we need a way to
• reference non-local objects,
• select subsets of all objects,
• query for objects, and
• execute transactions on sets of objects

Distributed Persistent Objects Lukas Epple 18 / 31

Motivation Persistent Objects Distributed Persistent Objects

The Basic Concept

Scala:

1 numbers
2 .filter(_ < 5)
3 .map(x => x * x)
4 .foldLeft (0)((acc , current) => max(acc , current))

Even modern C++23:

1 numbers
2 | views:: filter ([](const auto& x){
3 return x < 5;
4 })
5 | views:: transform ([](const auto& x){
6 return x * x;
7 })
8 | ranges :: fold_left (0, std::max <int >);

Distributed Persistent Objects Lukas Epple 19 / 31

Motivation Persistent Objects Distributed Persistent Objects

The Basic Concept

Scala:

1 numbers
2 .filter(_ < 5)
3 .map(x => x * x)
4 .foldLeft (0)((acc , current) => max(acc , current))

Even modern C++23:

1 numbers
2 | views:: filter ([](const auto& x){
3 return x < 5;
4 })
5 | views:: transform ([](const auto& x){
6 return x * x;
7 })
8 | ranges :: fold_left (0, std::max <int >);

Distributed Persistent Objects Lukas Epple 19 / 31

Motivation Persistent Objects Distributed Persistent Objects

Our Adaption: Views and Actions

This pattern is extremely powerful even on the local machine.
Nothing prevents us from using it in a distributed setting!

Views: access objects
• map
• filter
• elem

Actions: operations on objects
• reduce
• transact

Distributed Persistent Objects Lukas Epple 20 / 31

Motivation Persistent Objects Distributed Persistent Objects

Our Adaption: Views and Actions

This pattern is extremely powerful even on the local machine.
Nothing prevents us from using it in a distributed setting!

Views: access objects
• map
• filter
• elem

Actions: operations on objects
• reduce
• transact

Distributed Persistent Objects Lukas Epple 20 / 31

Motivation Persistent Objects Distributed Persistent Objects

Views: Example

• Two nodes, each stores a set of objects with int values.
• Select objects whose string representation is two characters long.

N1

11 5

N2

20 100

Distributed Persistent Objects Lukas Epple 21 / 31

Motivation Persistent Objects Distributed Persistent Objects

Views: Example (contd.)

11 5 20 100View<int>

"11" "5" "20" "100"

map λx: x.str()

"11" "20"

filter λx: |x| == 2

11 20

elem()

Distributed Persistent Objects Lukas Epple 22 / 31

Motivation Persistent Objects Distributed Persistent Objects

Views: Example (contd.)

11 5 20 100View<int>

"11" "5" "20" "100"map λx: x.str()

"11" "20"

filter λx: |x| == 2

11 20

elem()

Distributed Persistent Objects Lukas Epple 22 / 31

Motivation Persistent Objects Distributed Persistent Objects

Views: Example (contd.)

11 5 20 100View<int>

"11" "5" "20" "100"map λx: x.str()

"11" "20"filter λx: |x| == 2

11 20

elem()

Distributed Persistent Objects Lukas Epple 22 / 31

Motivation Persistent Objects Distributed Persistent Objects

Views: Example (contd.)

11 5 20 100View<int>

"11" "5" "20" "100"map λx: x.str()

"11" "20"filter λx: |x| == 2

11 20elem()

Distributed Persistent Objects Lukas Epple 22 / 31

Motivation Persistent Objects Distributed Persistent Objects

Views: Example (contd.)

N1

11 5

N2

20 100

• Nodes N1, N2 can calculate the view independently
• How do Actions work with the result of a view?

Distributed Persistent Objects Lukas Epple 23 / 31

Motivation Persistent Objects Distributed Persistent Objects

Actions: Fold Left Operation

• def foldL[B](z: B)(op: (B, A) => B): B
• Calculate the maximum of all values in the View and return it

−∞
acc

11

11

acc

20

20

acc
max max

result

Problem: Objects are not on the same node!

Distributed Persistent Objects Lukas Epple 24 / 31

Motivation Persistent Objects Distributed Persistent Objects

Actions: Reduce Operation

−∞
acc

11

11

acc

foldLeft N1

max

−∞
acc

20

20

acc

foldLeft N2

max

20

comb

• def reduce[B](z: B)(op: (B, A) => B)(comb: (B, B) => B): B
• reduce operation allows parallelization of foldLeft

Distributed Persistent Objects Lukas Epple 25 / 31

Motivation Persistent Objects Distributed Persistent Objects

Actions: Reduce Operation

−∞
acc

11

11

acc

foldLeft N1

max
−∞
acc

20

20

acc

foldLeft N2

max

20

comb

• def reduce[B](z: B)(op: (B, A) => B)(comb: (B, B) => B): B
• reduce operation allows parallelization of foldLeft

Distributed Persistent Objects Lukas Epple 25 / 31

Motivation Persistent Objects Distributed Persistent Objects

Actions: Reduce Operation

−∞
acc

11

11

acc

foldLeft N1

max
−∞
acc

20

20

acc

foldLeft N2

max

20

comb

• def reduce[B](z: B)(op: (B, A) => B)(comb: (B, B) => B): B
• reduce operation allows parallelization of foldLeft

Distributed Persistent Objects Lukas Epple 25 / 31

Motivation Persistent Objects Distributed Persistent Objects

Actions: Reduce Operation

−∞
acc

11

11

acc

foldLeft N1

max
−∞
acc

20

20

acc

foldLeft N2

max

20

comb

• def reduce[B](z: B)(op: (B, A) => B)(comb: (B, B) => B): B
• reduce operation allows parallelization of foldLeft

Distributed Persistent Objects Lukas Epple 25 / 31

Motivation Persistent Objects Distributed Persistent Objects

Code

The previous example could be implemented like this

1 View <int >:: create ()
2 .map(std::to_string <int >)
3 .filter ([](const auto& x){
4 return x.length () == 2;
5 })
6 .elem()
7 .reduce(
8 0, // initial accumulator value
9 std::max <int >, // foldLeft

10 std::max <int > // reduce
11)
12 .build ();

Distributed Persistent Objects Lukas Epple 26 / 31

Motivation Persistent Objects Distributed Persistent Objects

What About Write Operations?

• create a View to select objects
• use the transact Action on the view

n1

a b c d

n2

e f g h

T1 T2

Distributed Persistent Objects Lukas Epple 27 / 31

Motivation Persistent Objects Distributed Persistent Objects

What About Write Operations?

• How do we ensure the order of independent transactions?

• we only have local atomicity

N1

a b c d

N2

e f g h

T1 T2

T1;T2 T2;T1

X

Distributed Persistent Objects Lukas Epple 28 / 31

Motivation Persistent Objects Distributed Persistent Objects

What About Write Operations?

• How do we ensure the order of independent transactions?
• we only have local atomicity

N1

a b c d

N2

e f g h

T1 T2

T1;T2 T2;T1X
Distributed Persistent Objects Lukas Epple 28 / 31

Motivation Persistent Objects Distributed Persistent Objects

Solution

• build a tree of nodes
• every transaction is sent to the lowest common parent node of all objects involved
• this node decides the order of transactions

Distributed Persistent Objects Lukas Epple 29 / 31

Motivation Persistent Objects Distributed Persistent Objects

Sequential Consistency of Distributed Transactions

• N3 is the lowest common parent of N1, N2

N3

N1

a b c d

N2

e f g h

T1

T2

T1;T2 T1;T2

T1 < T2

Distributed Persistent Objects Lukas Epple 30 / 31

Motivation Persistent Objects Distributed Persistent Objects

Conclusion

• NVRAM is a promising technology
• We can execute distributed transactions without databases
• Views are a powerful abstraction for the interaction

Distributed Persistent Objects Lukas Epple 31 / 31

Thank you for your attention!

For further inquiries, contact:
Lukas Epple lukas.epple@ipvs.uni-stuttgart.de
Simon König st156571@stud.uni-stuttgart.de
Joel Waimer st167572@stud.uni-stuttgart.de

	Motivation
	Persistent Objects
	Distributed Persistent Objects

