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Everyone uses databases.

Why?

Consistent access to persistent data

Database =⇒ Transactional data
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Are databases always the best solution?

Let’s take a step back!

Database ?⇐= Transactional data
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Motivation

• can we integrate the persistency into the programs?
• same object representation
• avoid query processing
• developers are already familiar with object-oriented data access
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Goal: Persistent Objects

• persistency
• objects of any kind
• transactional behavior
• speed
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First Step: Persistent Storage Hardware

Perfect hardware would be
• cheap
• fast
• persistent
• durable
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Intel® Optane™

• Released on March 19, 2017
• SSD and DIMM

Random Write Intel Optane DRAM SSD

Latency 0.17/0.3 0.08 60 [µs]
Bandwidth 1.4 5.6 0.2 [GB s−1]
Durability 360 - 0.7 [PBW]
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NVRAM in the Memory Hierarchy
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How does Intel® Optane™ work?
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But is it that simple?

Optane seems to be that magic memory!
• latency comparable to DRAM
• bandwidth almost as high as DRAM
• more durable than SSDs

Is that enough?

Remaining problems:
• Optane only guarantees atomic write for 8 Bytes
• Working with data on persistent storage is not trivial
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Objects on Persistent Storage: Pitfalls

1 struct A {
2 int a;
3 int b;
4 int c;
5 }
6

7 A *obj = nv_alloc(sizeof(A));

1 struct B {
2 int d;
3 int e;
4 std::vector <int > f;
5 }
6

7 B *obj = nv_alloc(sizeof(B));

NVRAMstruct A

a b c

struct B

d e f

RAM

[0] [1] . . .

f.data()
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Objects on Persistent Storage: Pitfalls

1 struct A {
2 int a;
3 int b;
4 int c;
5 }
6 A *obj = nv_alloc(sizeof(A));
7

8 obj ->a = 5;
9 obj ->b = 6;

What if the computer crashes between
line 8 and 9?

NVRAMstruct A

a b c
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We need Software that Manages Persistent Storage

Intel created the libpmemobj-cpp library for Optane
• provides transactional behavior with undo logs, and
• persistent data structures

But there are problems:
• we want no restrictions on the objects: Intel’s data structures too limited
• translation between persistent and volatile objects
• Optane was discontinued in 2022: we need a technology-independent solution
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What do we need?

• Persistent storage
• Memory mapped files for technology-independence
• Translation between volatile and persistent data structures
• Object Cache in the volatile RAM for accelerated reads
• Transactional writes
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Object Organization

Object Cache

RAM T0 T1 T2 T3 T4 T5 T6 T7

Persistence Manager

NVRAM T0 T1 T2 T3 T4 T5 T6 T7
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Transaction Execution

1 1 T . . .

O
k

bi
t

Ve
rs

io
n

Initial memory layout

Execute f on T in cache

1 1 T 0 2 f (T) . . .Copy to NVRAM

1 1 T 1 2 f (T) . . .Commit: Set OK bit

. . . 1 2 f (T) . . .Free memory
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Until now: Local Objects

Computer

a b c d

This gives us persistency and
transactions but we are limited in
capacity, access, . . .
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Distributed Persistent Objects

N1

a b c d

N2

e f g h

With Distributed Persistent Objects we need a way to
• reference non-local objects,
• select subsets of all objects,
• query for objects, and
• execute transactions on sets of objects
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The Basic Concept

Scala:

1 numbers
2 .filter(_ < 5)
3 .map(x => x * x)
4 .foldLeft (0)((acc , current) => max(acc , current ))

Even modern C++23:

1 numbers
2 | views:: filter ([]( const auto& x){
3 return x < 5;
4 })
5 | views:: transform ([]( const auto& x){
6 return x * x;
7 })
8 | ranges :: fold_left (0, std::max <int >);
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Our Adaption: Views and Actions

This pattern is extremely powerful even on the local machine.
Nothing prevents us from using it in a distributed setting!

Views: access objects
• map
• filter
• elem

Actions: operations on objects
• reduce
• transact
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Views: Example

• Two nodes, each stores a set of objects with int values.
• Select objects whose string representation is two characters long.

N1

11 5

N2

20 100
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Views: Example (contd.)

11 5 20 100View<int>

"11" "5" "20" "100"

map λx: x.str()

"11" "20"

filter λx: |x| == 2

11 20

elem()
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Views: Example (contd.)

11 5 20 100View<int>

"11" "5" "20" "100"map λx: x.str()
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Views: Example (contd.)

N1

11 5

N2

20 100

• Nodes N1, N2 can calculate the view independently
• How do Actions work with the result of a view?

Distributed Persistent Objects Lukas Epple 23 / 31



Motivation Persistent Objects Distributed Persistent Objects

Actions: Fold Left Operation

• def foldL[B](z: B)(op: (B, A) => B): B
• Calculate the maximum of all values in the View and return it

−∞
acc

11

11

acc

20

20

acc
max max

result

Problem: Objects are not on the same node!
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Actions: Reduce Operation

−∞
acc

11

11

acc

foldLeft N1

max

−∞
acc

20

20

acc

foldLeft N2

max

20

comb

• def reduce[B](z: B)(op: (B, A) => B)(comb: (B, B) => B): B
• reduce operation allows parallelization of foldLeft
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Code

The previous example could be implemented like this

1 View <int >:: create ()
2 .map(std::to_string <int >)
3 .filter ([]( const auto& x){
4 return x.length () == 2;
5 })
6 .elem()
7 .reduce(
8 0, // initial accumulator value
9 std::max <int >, // foldLeft

10 std::max <int > // reduce
11 )
12 .build ();
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What About Write Operations?

• create a View to select objects
• use the transact Action on the view

n1

a b c d

n2

e f g h

T1 T2
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What About Write Operations?

• How do we ensure the order of independent transactions?

• we only have local atomicity

N1

a b c d

N2

e f g h

T1 T2

T1;T2 T2;T1

X
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Solution

• build a tree of nodes
• every transaction is sent to the lowest common parent node of all objects involved
• this node decides the order of transactions
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Sequential Consistency of Distributed Transactions

• N3 is the lowest common parent of N1, N2

N3

N1

a b c d

N2

e f g h

T1

T2

T1;T2 T1;T2

T1 < T2
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Conclusion

• NVRAM is a promising technology
• We can execute distributed transactions without databases
• Views are a powerful abstraction for the interaction
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Thank you for your attention!

For further inquiries, contact:
Lukas Epple lukas.epple@ipvs.uni-stuttgart.de
Simon König st156571@stud.uni-stuttgart.de
Joel Waimer st167572@stud.uni-stuttgart.de
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