# Black Holes, Wormholes \& Entanglement 

( SummerSoC 2023; Crete; June 26 - July 1, 2023 )

Prof. Dr. Dr. h.c. Frank Leymann<br>Institute of Architecture of Application Systems (IAAS)<br>U of Stuttgart



## Agenda

## Entanglement

# Einstein's Field Equation 

Black Holes

Properties of Black Holes
$E R=E P R$

Summary

## Agenda

# Entanglement 

# Einstein's Field Equation 

Black Holes

Properties of Black Holes
$E R=E P R$

Summary

## Definition

$$
\begin{gathered}
|\varphi\rangle \in \mathbb{H}_{1} \otimes \cdots \otimes \mathbb{H}_{n} \text { is separable }: \Leftrightarrow \\
|\varphi\rangle=\left|\psi_{1}\right\rangle \otimes \cdots \otimes\left|\psi_{n}\right\rangle \text { with }\left|\psi_{i}\right\rangle \in \mathbb{H}_{i} \text { for } 1 \leq \mathrm{i} \leq \mathrm{n}
\end{gathered}
$$

$|\varphi\rangle$ is entangled $: \Leftrightarrow|\varphi\rangle$ is not separable

## Examples

$$
\begin{gathered}
\left|\varphi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle) \\
\left|\varphi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle-|1\rangle \otimes|1\rangle) \\
\left|\psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|1\rangle+|1\rangle \otimes|0\rangle) \\
\left|\psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|1\rangle-|1\rangle \otimes|0\rangle) \\
\left|W_{n}\right\rangle=\frac{1}{\sqrt{n}}(|0 \ldots 001\rangle+|0 \ldots 010\rangle+|0 \ldots 100\rangle+\ldots+|1 \ldots 000\rangle) \\
\left|\Psi_{G H Z}^{n}\right\rangle=\frac{1}{\sqrt{2}}(|0 \cdots 0\rangle+|1 \cdots 1\rangle)
\end{gathered}
$$

## A Phenomenon

$$
\frac{1}{\sqrt{2}}(|00\rangle+|01\rangle)=|0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

Measuring the first qbit results in $|0\rangle$ with probability 1.
The second qbit will be measured as
$|0\rangle$ or $|1\rangle$ with probability $1 / 2$

This state is entangled

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Measuring the first qbit results in $|0\rangle$ or $|1\rangle$ with equal probability.
After that the value of the second qbit is already determined!

## EPR Paradoxon

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Measuring the first qubit results in $|0\rangle$ or $|1\rangle$ with equal probability. After that the value of the second qubit is already determined!

...independent of the physical distance at the time of measurement!
$\Rightarrow$ No communication, no interaction can take place between the qubits
(speed of light limits
the distance at which communication and interaction can take place)!

This is called non-local
Physics known by then was local!

Einstein:
Spooky actions
at a distance

## Intuition



## Entanglement as Global Phenomenon



## Entanglement: Importance

Entanglement is unique for quantum computing!

Each computation not involving entangled qubits, can be realized classically and in principle with the same efficiency than a quantum computation
(but: n qubits $\Rightarrow 2^{n}$ classical storage | quantum parallelism | ...)

Every quantum algorithm showing exponential speedup compared to a classical algorithm, must exploit entanglement.
(R. Jozsa, N. Linden: On the role of entanglement in quantum computational speed-up.
(2003) arXiv:quant-ph/0201143v2)

## Not Only Speedup

Most often, speedup is highlighted as quantum advantage
But precision can also be enhanced

- E.g. in classification



## ...And More...

The more test data are used, the smaller is the average error in classical supervised learning

The average error in quantum supervised learning is

$$
\text { Risk } \geq 1-\frac{r^{2} n^{2}+d+1}{d(d+1)}
$$

r: Schmidt-rank of training data n: Cardinality of S (training data) d: Dimension of Hilbert space
$\mathrm{r}=\mathrm{d}$ : training data is maximal entangled
Already $\mathrm{n}=1$ implies : Risk $\geq 1-\frac{d^{2}+d+1}{d(d+1)} \xrightarrow{d \rightarrow \infty} 0$
A single maximal entangled element of training data suffice in high dimensions to learn with low risk a unitary transformation

# Frequency of Entanglement 

Let $\mathscr{H}$ be a Hilbert space with $\operatorname{dim} \mathscr{H}=d=2^{N}$ and let
$\mathfrak{D}, \mathfrak{S} \subseteq \mathscr{H}$ be all states or all separable states (mixed states)

Then, $\frac{\operatorname{vol} \mathfrak{S}}{\operatorname{vol} \mathfrak{D}}$ is exponentially small in N

Entanglement is ubiquitous

## Agenda

## Entanglement

## Einstein's Field Equation

Black Holes

## Properties of Black Holes

$E R=E P R$

Summary
R. Oloff: Geometrie der Raumzeit. Springer 2018.
J. W. Robbin, D. A. Salamon: Introduction to Differential Geometry. Springer 2022.
R. J. Adler: General Relativity and Cosmology. Springer 2022.

# Line Element in $\mathbb{R}^{3}$ (cartesian coordinates) 

 Distance of two points in $\mathbb{R}^{3}$ :

$$
\begin{aligned}
& d(a, b)=\sqrt{\left(x_{1}^{b}-x_{1}^{a}\right)^{2}+\left(x_{2}^{b}-x_{2}^{a}\right)^{2}+\left(x_{3}^{b}-x_{3}^{a}\right)^{2}} \\
& \begin{aligned}
\Rightarrow d(a, b)^{2} & =\left(x_{1}^{b}-x_{1}^{a}\right)^{2}+\left(x_{2}^{b}-x_{2}^{a}\right)^{2}+\left(x_{3}^{b}-x_{3}^{a}\right)^{2} \\
& =\Delta x_{1}^{2}+\Delta x_{2}^{2}+\Delta x_{3}^{2}
\end{aligned}
\end{aligned}
$$

The so-called line element $d s$ is measuring infinitesimal distances:

$$
d s^{2}=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}
$$



$$
\begin{aligned}
\|v\|^{2} & =\langle v, v\rangle=\left\langle v_{\alpha} \alpha+v_{\gamma} \gamma, v_{\alpha} \alpha+v_{\gamma} \gamma\right\rangle \\
& =v_{\alpha}^{2}\langle\alpha, \alpha\rangle+v_{\alpha} v_{\gamma}\langle\alpha, \gamma\rangle+v_{\gamma} v_{\alpha}\langle\gamma, \alpha\rangle+v_{\gamma}^{2}\langle\gamma, \gamma\rangle \\
& =v_{\alpha}^{2}\langle\alpha, \alpha\rangle+2 v_{\alpha} v_{\gamma}\langle\alpha, \gamma\rangle+v_{\gamma}^{2}\langle\gamma, \gamma\rangle \\
& \stackrel{\text { def }}{=} g_{11} v_{\alpha}^{2}+g_{12} v_{\alpha} v_{\gamma}+g_{22} v_{\gamma}^{2} \quad \text { (note: }\langle\alpha, \gamma\rangle=\langle\gamma, \alpha\rangle \Rightarrow\langle
\end{aligned}
$$

 <br> \section*{Line Element in $\mathbb{R}^{2}$ <br> \section*{Line Element in $\mathbb{R}^{2}$ <br> <br> (arbitrary coordinates)} <br> <br> (arbitrary coordinates)}
(note: $\langle\alpha, \gamma\rangle=\langle\gamma, \alpha\rangle \Rightarrow\langle\alpha, \gamma\rangle+\langle\gamma, \alpha\rangle=2\langle\alpha, \gamma\rangle=g_{12}$ )

The line element $d s$ gives the length of infinitesimal vectors $\left(d x_{1}, d x_{2}\right)$ :

$$
d s^{2}=g_{11} d x_{1}^{2}+g_{12} d x_{1} d x_{2}+g_{22} d x_{2}^{2}
$$

The matrix $\left(g_{i j}\right)$ ist called first fundamental form

# Line Element in Curved Spaces 



- $\mathrm{M}=\mathrm{f}(\mathrm{U})$ is a curved surface (manifold)
- Tangent vectors in $\mathrm{x}=\mathrm{f}(\mathrm{p})$ build the tangent space $T_{x} M$ of M in x
- First fundamental form depends on $\mathrm{x}:\left(g_{i j}(x)\right)$ (also: $\left.g_{x}\right)$
- $g_{x}$ defines a scalar product on $T_{x} M:\langle v, w\rangle_{x} \stackrel{\text { def }}{=} v^{T}\left(g_{i j}(x)\right) w \stackrel{\text { def }}{=} g_{x}(v, w)$
- Reminder: a scalar product induces a metric on a vector space
- Thus, $g_{x}=\left(g_{i j}(x)\right)$ is also called Riemannian Metric on M
- $(\mathrm{M}, \mathrm{g})$ is called Riemannian Manifold


## Measuring Lengths



$$
s(\gamma)=\int_{t_{1}}^{t_{2}} \sqrt{g_{\gamma(t)}\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)} d t
$$

$s(\gamma)$ is called arc length of $\gamma$ or simply length of the curve $\gamma$

## Reminder:

## Directional Derivative

Let $U \supseteq \mathbb{R}^{n}, f: U \rightarrow \mathbb{R}, F: U \rightarrow \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$
$D_{v} f=\lim _{h \rightarrow 0} \frac{f(x+h v)-f(x)}{h}$ is directional derivative of f in direction of v

- Writing: $D_{v} f=\partial_{v} f=\nabla_{v} f=\frac{\partial f}{\partial \nu}$

$$
D_{v} f=\operatorname{grad} f \cdot v \text { and } D_{e_{i}} f=\frac{\partial f}{\partial x_{i}}
$$

$D_{v} F\left(=\partial_{v} F=\nabla_{v} F\right)$ is build component-wise, $D_{v} F=D F \cdot v \in \mathbb{R}^{m}$
with Jacobi-matrix $D F \stackrel{\text { def }}{=}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$

## Parallel Transport

$X: M \rightarrow \bigcup_{p \in M} T_{p} M \stackrel{\text { def }}{=} T M, X(p) \in T_{p} M$ is vector field
Let $\gamma: I=\left[t_{0}, t_{1}\right] \rightarrow M$ be a curve on M .
X is parallel along $\gamma: \Leftrightarrow \nabla_{\left.\gamma^{\prime}(t)\right)} X(\gamma(t))=0$
( $\approx \mathrm{X}$ doesn't change along the curve $-\nabla$ is directional derivative)


$$
\forall v_{0} \in T_{\gamma\left(t_{0}\right)} M \exists!V: M \rightarrow T M: V\left(\gamma\left(t_{0}\right)\right)=v_{0} \wedge \text { V parallel along } \gamma
$$

$P_{\gamma\left(t_{0}\right), \gamma\left(t_{1}\right)}: T_{\gamma\left(t_{0}\right)} M \rightarrow T_{\gamma\left(t_{1}\right)} M: v_{0} \mapsto V\left(\gamma\left(t_{1}\right)\right)$ is called parallel transport of $v_{0}$

## Christoffel-Symbols

Let M be an n-dimensional manifold, i.e. $\operatorname{dim} T_{p} M=\mathrm{n}, \forall p \in M$
Let $X_{1}, \ldots, X_{n}$ be vector fields that are a basis for $T_{p} M, \forall p \in M$
Then $\nabla_{X_{i}} X_{j}=\sum_{k=1}^{n} \Gamma_{i j}^{k} X_{k}$, with the Christoffel-Symbols $\Gamma_{i j}^{k} \in \mathbb{R}$

It is: $\Gamma_{i j}^{k}=\frac{1}{2} \sum_{r} g^{k r}\left(\frac{\partial g_{j r}}{\partial x_{i}}+\frac{\partial g_{i r}}{\partial x_{j}}-\frac{\partial g_{i j}}{\partial x_{r}}\right)$ with $\left(g^{k r}\right) \stackrel{\text { def }}{=}\left(g_{k r}\right)^{-1}$
(d.h. the Christoffel-Symbols are determined by the partial derivatives of the metric)

# Directional Derivatives and Christoffel-Symbole 

Let $X_{1}, \ldots, X_{n}$ be vector fields that are a basis for $T_{p} M$
Let $X=\sum x_{i} X_{i}$ and $Y=\sum y_{j} X_{j}$ be arbitrary vector fields

Then: $\nabla_{X} Y=\sum z_{k} X_{k}$

It is: $z_{k}=\sum_{i, j} \Gamma_{i j}^{k} x_{i} y_{j}+\sum_{i} x_{i} \nabla_{X_{i}} y_{k}$
(d.h. the directional derivatives are determined by the Christoffel-Symbols)
(...and, thus, by the partial derivatives of the metric)

## Holonomy

The tangent vector v at A of curve AB is parallel transported along AB

The resulting vector at B is parallel transported along curve BC

The resulting vector at C is parallel transported along curve CA


The resulting vector w at A is in general not the original vector v !
The angle $\alpha$ between v and w is a measure for the curvature of M
This phenomenon is referred to as holonomy

## Riemannian Curvature

- Let X, Y, Z be vector fields
- $\delta, \gamma$ the curves defined by $\mathrm{X}, \mathrm{Y}$
- Z is parallel transported along
- $\ldots \mathrm{X}$ with $P_{\delta\left(s_{0}\right), \delta\left(s_{1}\right)}$ and Y with $P_{\gamma\left(t_{0}\right), \gamma\left(t_{1}\right)}$
e $\ldots-\mathrm{X}$ with $P_{\delta\left(s_{1}\right), \delta\left(s_{0}\right)}$ and -Y with $P_{\gamma\left(t_{1}\right), \gamma\left(t_{0}\right)}$
$\Rightarrow P_{\gamma\left(t_{1}\right), \gamma\left(t_{0}\right)} \circ P_{\delta\left(s_{1}\right), \delta\left(s_{0}\right)} \circ P_{\gamma\left(t_{0}\right), \gamma\left(t_{1}\right)} \circ P_{\delta\left(s_{0}\right), \delta\left(s_{1}\right)}(Z)=v$

- Holonomy $\Rightarrow v \neq \mathrm{Z}(\delta(0)) \Rightarrow$ curvature!
$-\operatorname{Via} s_{1} \rightarrow s_{0}$ and $t_{1} \rightarrow t_{0}$ the curves become infinitesimal and an indicator of the curvature at $\mathrm{q}=\delta\left(s_{0}\right)$ results
$\Rightarrow \lim _{t_{1} \rightarrow t_{0} s_{1} \rightarrow s_{0}} P_{\gamma\left(t_{1}\right), \gamma\left(t_{0}\right)} \circ P_{\delta\left(s_{1}\right), \delta\left(s_{0}\right)} \circ P_{\gamma\left(t_{0}\right), \gamma\left(t_{1}\right)} \circ P_{\delta\left(s_{0}\right), \delta\left(s_{1}\right)}(Z)=\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}\right) Z \stackrel{\text { def }}{=} R(X, Y) Z$
No assumptions are being made about a space
"embracing" the manifold M: inner geometry!
Otherwise: outer geometry!


## Ricci Curvature

$\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}$ defines for $p \in M$ a multi-linear map

$$
\mathrm{Rm}_{p}: T_{p} M \times T_{p} M \times T_{p} M \rightarrow T_{p} M
$$

as follows: for $Y, Z \in T_{p} M$ fixed, define $\Phi_{p}^{Y, Z}: T_{p} M \rightarrow T_{p} M$ as
$\Phi_{p}^{Y, Z}(X):=\operatorname{Rm}_{p}(X, Y, Z)=R(X, Y) Z$

Then, $\operatorname{Ric}_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R},(Y, Z) \mapsto \operatorname{Tr} \Phi_{p}^{Y, Z}$ is called Ricci-Map
With $X \in T_{p} M,\|X\|=1, \operatorname{Ric}_{p}(X, X)$ is the Ricci-Curvature in direction of X
Define $R_{i j}:=\sum_{a=1}^{n} \frac{\partial \Gamma_{i j}^{a}}{\partial x_{a}}-\sum_{a=1}^{n} \frac{\partial \Gamma_{a i}^{a}}{\partial x_{j}}+\sum_{a=1}^{n} \sum_{b=1}^{n}\left(\Gamma_{a b}^{a} \Gamma_{i j}^{b}-\Gamma_{i b}^{a} \Gamma_{a j}^{b}\right)$
(d.h. the $R_{i j}$ are defined by means of the Christoffel-Symbole and their derivatives, i.e. by the metric)
$\underset{\substack{\text { They } \\ \text { Theymn }}}{ }:=\sum_{i, j} g_{i j} R_{i j}$ is called Ricci-scalar or scalar curvature

## Geodesics

A curve $\gamma: I \rightarrow M$ is called geodesic $: \Leftrightarrow \nabla_{\gamma^{\prime}} \gamma^{\prime}=0$

- The tangent vector $\gamma^{\prime}$ does not change along the curve

- The curve has no curvature within M

Locally, a geodesic is always the shortest connection between two points
(A geodesic on a sphere is always a segment of a great-circle:
the red geodesic is the shortest connection between p and q , but the green geodesic connects p and q too [but is not the shortest connection])

$$
\begin{gathered}
\text { A curve } \gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \text { is a geodesic } \Leftrightarrow \text { For } 1 \leq i \leq \mathrm{n}: \\
\frac{d^{2} \gamma_{i}}{d t^{2}}+\sum_{j, k} \Gamma_{j k}^{i} \frac{d \gamma_{j}}{d t} \frac{d \gamma_{k}}{d t}=0
\end{gathered}
$$

(Reminder: the $\Gamma_{j k}^{i}$ are determined by the metric and its partial derivatives!)

## Einstein's Field Equation



Matter (Stress-Energy Tensor) results in cuvature (Ricci Tensor) of space-time, such that particles move on geodetics (metric)
(a system of 16 partial differential equations of 2 nd order)

## Schwarzschild-Metric

Let M be a mass, that neither rotates nor is it charged
Outside M in its nearby environment, there are no other masses
Then: $T_{\mu \nu}=0$ (vacuum field equation)
$\Rightarrow$ solution (in spherical coordinates) is the so-called Schwarzschild-Solution:

$$
\mathrm{d} s^{2}=-c^{2}\left(1-\frac{2 G M}{c^{2} r}\right) \mathrm{d} t^{2}+\left(1-\frac{2 G M}{c^{2} r}\right)^{-1} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \theta^{2}+r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}
$$

Solution has two singularities at $r=0$ and at $r_{S}:=\frac{2 G M}{c^{2}}$ (Schwarzschild Radius)

- In proper coordinates, $r_{S}$ is no longer a singularity
- Singularity at $r=0$ is a proper singularity (i.e. independent of any chosen coordinate system)


## (Anti-) de Sitter

Field equation with cosmological constant: $R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}$

- $\Lambda$ has been introduced by Einstein in order to get a static universe
- But: in the meantime we know that the universe is not static

New observations can be explained with $\Lambda$

- $\Lambda>0 \Rightarrow$ anti-gravitation ("dark energy") $\Rightarrow$ expansion of the universe
- $\Lambda<0 \Rightarrow$ contraction of the universe

Vacuum solutions with cosmological constant:

- de Sitter space $(\Lambda>0) \Rightarrow$ constant positive curvature ( $\hat{=}$ sphere)
- ...matched by observations
- Anti de Sitter space $(\Lambda<0) \Rightarrow$ constant negative curvature ( $\xlongequal{\wedge}$ saddle surface)
- space does not expand
- ...does not match observations


## Agenda

## Entanglement

## Einstein's Field Equation

## Black Holes

## Properties of Black Holes

$E R=E P R$

Summary
M. Camenzind: Faszination kompakte Objekte. Springer 2021.
W. Schmitz: Understanding Relativity. Springer 2022.
D. Grumiller, M. M. Sheikh-Jabbari: Black Hole Physics. Springer 2022.

## Escape Velocity

$\ldots$ is the velocity $v_{F}$, which a mass $m$ at a distance $r$ from a mass $M$ must have to escape from $M$
I.e. the kinetic energy of $m$ must be equal to the binding energy within the gravitational field of M :

$$
\frac{1}{2} m v_{F}^{2}=\frac{G M m}{r} \quad \Rightarrow \quad v_{F}=\sqrt{\frac{2 G M}{r}}
$$

> Earth: $v_{F}=11,2 \mathrm{~km} / \mathrm{s}$
> Sun: $v_{F}=617,4 \mathrm{~km} / \mathrm{s}$

## Event Horizon

With $r=r_{S}=\frac{2 G M}{c^{2}}$ the escape velocity becomes $v_{F}=\sqrt{\frac{2 G M}{r_{S}}}=c!$
$\Rightarrow$ From this area even light cannot escape!
$\Rightarrow$ This area appears to be completely black: black hole

Out of the area within the Schwarzschild radius, no information at all can reach us, i.e. this area is for external observers eventless.

Thus, the sphere with radius $r_{S}$ is called event horizon

## Agenda

## Entanglement

## Einstein's Field Equation

Black Holes

## Properties of Black Holes

$E R=E P R$

Summary
M. Camenzind: Faszination kompakte Objekte. Springer 2021.
D. Grumiller, M. M. Sheikh-Jabbari: Black Hole Physics. Springer 2022.

## Cosmic Censorship

Penrose-Hawking Theorems prove:
Singularities are consequences of gravitational collapse, all collapsed matter will be concentrated to a single point.

Do singularities exist, which are not surrounded by an event horizon, i.e. that are directly observable (so-called naked singularities)?

Conjecture (up to now without proof):

Naked black holes do not exist.

## Surface Gravity

Gravitational acceleration $g$ at the surface $r$ of a mass M
results from $m g=\frac{G m M}{r^{2}}$ d.h. $g=\frac{G M}{r^{2}}$

With $r=r_{S}=\frac{2 G M}{c^{2}}$ the gravitational acceleration $\kappa_{H}$
at the event horizon is: $\quad \kappa_{H}=\frac{G M}{\left(2 G M / c^{2}\right)^{2}}=\frac{c^{4}}{4 G M}$
$\kappa_{H}$ is called surface gravity at the event horizon

The surface gravity $\kappa_{H}$ at the event horizon is constant.

## Horizon Theorem

Given two black holes of masses $M_{1}, M_{2}$, which merge
The mass of the merged black hole is then $M=M_{1}+M_{2}$

The Schwarzschild radius of the merged black hole is:

$$
r_{S}=\frac{2 G M}{c^{2}}=\frac{2 G\left(M_{1}+M_{2}\right)}{c^{2}}=\frac{2 G M_{1}}{c^{2}}+\frac{2 G M_{2}}{c^{2}}=r_{S, 1}+r_{S, 2}
$$

The surface area of the horizon of the merged black hole is:

$$
\begin{aligned}
A_{H} & =4 \pi r_{S}^{2}=4 \pi\left(r_{S, 1}+r_{S, 2}\right)^{2}=4 \pi r_{S, 1}^{2}+4 \pi r_{S, 2}^{2}+8 \pi r_{S, 1} r_{S, 2} \\
& =A_{H, 1}+A_{H, 2}+8 \pi r_{S, 1} r_{S, 2}>A_{H, 1}+A_{H, 2}
\end{aligned}
$$

The horizon area $A_{H}$ of black holes cannot shrink.

## Decay of Black Holes?

Assumption: A black hole of mass $M=M_{1}+M_{2}$ decays into two black holes of masses $M_{1}, M_{2}$

As shown before: $A_{H}=A_{H, 1}+A_{H, 2}+8 \pi r_{S, 1} r_{S, 2}>A_{H, 1}+A_{H, 2}$
$\Rightarrow$ By decay, the horizon area would shrink: contradiction!

A black hole cannot decay (into black holes of smaller masses).

## No-Hair-Theorem

All properties of a black hole are completely determined by its mass M , its angular momentum J and its electric charge C .
I.e. no other physical quantities (magnetic field, number of particles, their spin,...) influence the properties of a black hole

These additional quantities ("hair") are irrelevant for black holes
Black holes have no hair

But the particles that collapsed into the black hole had these quantities!
Problem: What happened to this corresponding information? (see later)

## Vacuum Fluctuation

Reminder: Heisenberg Uncertainty Relation $\Delta_{v}(A) \cdot \Delta_{v}(B) \geq \frac{1}{2}\left|\langle[A, B]\rangle_{v}\right|$
This gives: $\Delta E \Delta t \geq \frac{\hbar}{2}$ mit $\hbar:=\frac{h}{2 \pi}$
$E=m c^{2} \Rightarrow$ for a small period of time $\Delta t$ a mass $\Delta m$ can come into existence

Conservation laws of physics: this matter consists of particle/antiparticle pairs
$\approx$ Conception: in the vacuum these pairs are created permanently, but they are destroyed in a very short time ("annihilation")
"The vacuum is fluctuating"

## Evaporation of Black Holes

- Close to the event horizon, $T, \bar{T}$ are created because of vacuum fluctuation
- Assumption: $\bar{T}$ (or $T$ ) falls into the black hole, $T$ ( or $\bar{T}$ ) escapes
$\Rightarrow$ No annihilation possible: Violation of the conservation of energy!
- Analysis: The energy of $\bar{T}$ is negative ( $\Rightarrow$ conservation of energy)!
$\Rightarrow \bar{T}$ has negative mass $\left(E=m c^{2}\right)$
$\Rightarrow$ The black hole is loosing mass
"Evaporation of the black hole"

$$
t_{\text {evaporation }}=2.1 \times 10^{67}\left(\frac{M}{M_{\odot}}\right)^{3} \text { [years] }
$$

Stellar black holes $\left(M \geq M_{\odot}\right) \Rightarrow t_{\text {evaporation }}>10^{67}$ [years] $\gg 1.4 \times 10^{10}$ [years] (age of the universe)
$\Rightarrow$ Evaporation is irrelevant at present! (but: primordial black holes!)

## Macro-/Microstates

A system consists of N particles. We distinguish:

- Microstate: state of an individual particle of the system
- Macrostate: overall state of the whole system

The macrostate result from the microstates
Example: The macrostate of a gas (temperature, pressure,...) results from the microstates (location, momentum) of the gas particles.

Phase space: set of all possible microstates
Let $p_{i}$ be the probability that the i-th particle is in a certain microstate

Configuration: particular probability distribution of the microstates (each point in the phase space has an associated probability)

## Entropy

Information that is needed to determine the configuration of a certain macrostate is called entropy $S$

$$
S:=-k_{B} \sum_{i=1}^{N} p_{i} \cdot \ln p_{i}
$$

The term has its origin in thermodynamics
There it is proven: $d S=\frac{d Q}{T}$ (Q: amount of heat, T : temperature)
Second law of thermodynamics: $d S \geq 0$

# Quantum Mechanical Interpretation of Entropy 

The microstate of particle $i$ is the point $|i\rangle$ in Hilbert space

- The phase space is substituted by the Hilbert space

The corresponding macrostate is the density matrix $\rho=\sum p_{i}|i\rangle\langle i|$
von Neumann entropy of $\rho$ is $\quad S:=-\operatorname{Tr}(\rho \ln \rho)$

Quantum physical entropy corresponds up to the factor $k_{B}$ to the information theoretical entropy

## Summary: Entropy

Entropy measures the information needed to completely describe the macrostate of a system
based on the distribution of its microstates

- Entropy can never decrease
- Things with entropy have a temperature


## Bekenstein-Hawking Formula

A body with mass $m$ and entropy $S$ falls into a black hole
$\Rightarrow$ Entropy outside the event horizon is reduced

- Because: the information content of the body is no longer available outside!
$\Rightarrow$ The mass and, thus, the horizon area of the black hole increases
Because entropy cannot decrease, the otherwise lost entropy must correspond to the increase of the horizon area
$\Rightarrow$ The horizon area is a measure for the entropy of the black hole
The entropy of a black hole is $\quad S=\frac{k_{B}}{4 \mathfrak{Z}_{P}^{2}} A_{H}$
with the Planck Length $\mathfrak{R}_{P}=\sqrt{G \hbar / c^{3}}\left(\approx 1,616 \cdot 10^{-35} \mathrm{~m}\right)$
(smallest length in which space can be subdivided; everything smaller that $\mathfrak{R}_{P}$ collapses to a black hole)


## Hawking Radiation

Remember: Things with entropy have a temperature
Temperature of a black hole is $T=\frac{\hbar c^{3}}{8 \pi G M k_{\mathrm{B}}}=\frac{\hbar}{2 \pi c k_{B}} \kappa_{H}$

- Note: $T \propto \frac{1}{M}$

But a body with a temperature emits thermal radiation
$\Rightarrow$ a black hole radiates: contradiction(!) because nothing can escape a black hole!

Solution: this radiation corresponds to the particles, that are created by the evaporation of the black hole
$\Rightarrow$ By radiating, the black hole loses mass, thus, it gets hotter until it explodes!

## Holographic Principle

(t'Hooft, Susskind)
Information content of a black hole proportional to the number of potential microstates within the black hole

Thus, information content should be proportional to the volume of the black hole

- ...because the particles are scattered across the volume of the black hole

But the information content is proportional to the horizon area $S=\frac{k_{B}}{4 \mathfrak{Q}_{P}^{2}} A_{H}$

- Via entanglement the number of degrees of freedom in the volume becomes proportional to its enclosing surface(*)
- The degrees of freedom of the microstates correspond 1-1 to the degrees of freedom at the horizon : Holographic Principle

The horizon is like a hologram of the inner of the black hole All information about the inner is encoded on the horizon
L. Susskind: The world as a hologram. arXiv:hep-th/9409089v2 (1994)

## Horizon Area \& Information

$$
S=\frac{k_{B}}{4} \frac{A_{H}}{\mathfrak{Q}_{P}^{2}}
$$

$\Rightarrow$ Entropy is the number of Planck Cells $A_{H} / \mathbb{Q}_{P}^{2}$ on the horizon (up to a factor)

Planck Cell $\mathfrak{R}_{P}^{2}$ is the smallest area, which can carry information: Planck Cell $\xlongequal[=]{ } 1$ Qubit
"Information equates surface"
Triangulated Euent Harizan

(Quelle: https://mathoverflow.net/q/144405)
The same can be shown for the horizon of the whole universe

## Information \& Gravitation

$$
S=\frac{k_{B}}{4 \mathfrak{R}_{P}^{2}} A_{H}
$$

- The event horizon is just thus big to fit the information content of all matter that has fallen into the black hole on its horizon
- This information content determines the horizon area and, thus, the Schwarzschild radius $r_{s}=\sqrt{\frac{A_{H}}{4 \pi}}=\frac{\mathfrak{Q}_{P}}{\sqrt{\pi k_{B}}} \sqrt{S}$
- This information content determines also the surface gravity $\kappa_{H}=\frac{G M}{r_{S}^{2}}$


## Interpretation

The entropy and, thus, the information content of a black hole determines the curvature of space-time "close" to the black hole

Gravity does not exist at microscopic scales (Planck Length)

Gravity is a macroscopic effect of entropy and information

Space-time consists of smallest structures (Planck Cells), each of which carry 1 Qubit of information

The qubits of the Planck Cells are entangled

## Spacetime via Emergence

Spacetime is a phenomenon of emergence, it is no longer fundamental

Spacetime is a fabric, it emerges from entangling qubits that represent Planck cells ${ }^{(*)}$
(but nobody knows yet what these qubits are made of)

> "It from Qubit"

## Information Paradox

## General Relativity Theory

Before falling into a black hole, particles have more properties than just mass, angular momentum J and its electric charge - i.e. those quantities that completely determine the properties of a black hole (No-Hair Theorem)

- Like spin,...

This additional information is lost when passing the event horizon
When a black hole evaporates, this information is not recovered

## Quantum Physics

The collapse is a unitary process, thus, reversible. Especially, the information lost can be recovered!

This is a contradiction!

# Additional Argument: No-Hiding Theorem 

When information is lost from a subsystem $\mathbb{H}_{A}$, which is part of the composed system $\mathbb{H}_{A} \otimes \mathbb{H}_{B}$, this information moves to the subsystem $\mathbb{H}_{B}$.

Information within a closed system is never lost ( $\equiv$ Law of conservation of quantum information)

## Agenda

## Entanglement

## Einstein's Field Equation

Black Holes

## Properties of Black Holes

$E R=E P R$

Summary
J. Maldacena, L. Susskind: Cool horizons for entangled black holes. arXiv:1306.0533v2 (2014)

## Wormhole

Introduced by H. Weyl as a possible construct(*)
$\equiv$ Special solution of Einstein's Field Equation ${ }^{* * *}$

- Space-time consists of two "sheets"
- The "sheets" are connected by a "surface of a cylinder"


## More precise:

 and $\Sigma$ be a 3-manifold with $\partial \Sigma \approx \mathbb{S}^{2}$,
then $\Omega$ is called a wormhole in M
$\{0\} \times \partial \Sigma$ and $\{1\} \times \partial \Sigma$ are the horizons of the two connected black holes

## A First Indicator

Quantum-mechanical computations allow:
(1) State $|\psi\rangle$ is created in a black hole A
(2) "Some" measurements are performed at the horizon of A , and the results are send to B via classical communication
(3) This data encodes a process, that is performed at B : as a result, $|\psi\rangle$ appears in the black hole B

$\Rightarrow$ In order for $|\psi\rangle$ to get from A to B , there must be a connection between A and B : a wormhole!

Note the similarity to teleportation, which requires entanglement between A and B
Wormholes and entanglement are equivalent descriptions

## Another Indicator



- QPU_1 and QPU_2 are entangled
- Information is submitted from QPU_1 to QPU_2
- The state of QPU_1 influences what will actually be submitted
- Thus, QPU_2 can learn about the state of QPU_1
- Or: at the "2-end" of the wormhole one can learn about the first black hole



## $E R=E P R$

Wormholes ${ }^{*}$ )<br>Entanglement

[ER] A. Einstein, N. Rosen: The Particle Problem in the General Theory of Relativity. Phys. Rev. 48, 73 (1935)
[EPR] A. Einstein, B. Podolsky, N. Rosen: Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
(*) Wormholes are also called Einstein-Rosen-Bridges

$$
\begin{aligned}
& \qquad E R=E P R: \\
& \text { Wormholes and entanglement are the same phenomenon }
\end{aligned}
$$

J. Maldacena, L. Susskind: Cool horizons for entangled black holes. arXiv:1306.0533v2 (2013)
J. Maldacena et al.: Diving into traversable wormholes. Fortschr. Phys., 65(5), 1700034 (2017)

## Consequence: Entanglement between particles origin from wormholes!

J.C. Baez, J. Vicary: Wormholes and Entanglement. Classical and Quantum Gravity, Vol. 31 No. 21 (2014) arXiv:1401.3416v2

## Generation of Wormholes in Principle

- Create a huge set of Bell-pairs
- Split the entangle particles into two sets and move them apart in large distance
- Then, collapse each of these particle clouds into a black hole $\Rightarrow$ Two entangled black holes!



## Hawking Radiation \& Wormholes

- Black holes resulting from a "simple" collapse are unilateral, i.e. they are not mouth of a wormhole

- Particles resulting from evaporation of a black hole are entangled with the inner black hole
- ...and, thus, connected with the black hole by means of "small" wormholes
- By collapse of (a subset of) the emitted particles a "big" wormhole with two mouths results
- ...time required for this process is called Page-Time


## Wormhole Traversability ${ }^{(3)}$

A wormhole cannot be traversed

- A wormhole is growing faster than matter can move through it ${ }^{*}$ )
- This can be explained via complexity theory (complexity of a circuit needed to create the quantum state of the black hole)


But one can "meet in the middle"
Microscopic wormholes could be traversable

- ...and submit information


## Experiment: Traversable Wormhole ${ }^{(\text {(e) }}$

Based on holographic duality, i.e.:

- Dynamics of quantum systems $\approx$ Effects of quantum gravity
$\Rightarrow$ With QPUs one can run experiments about quantum gravity ${ }^{(* *)}$
- This enables quantum circuits whose execution correspond to the dynamics of traversable wormholes ${ }^{*}$ )
- Effects of negative energy $\equiv$ Operations on entangled qubits

This is consistent with ER = EPR !

- This can be understood as a kind of quantum teleportation
${ }^{(*)}$ D. Jafferis et al.: Traversable wormhole dynamics on a quantum processor. Nature volume 612, pages 51-55 (2022) [BLOG Summary 1: https://ai.googleblog.com/2022/11/making-traversable-wormhole-with.html] [BLOG Summary 2: https://inqnet.caltech.edu/wormhole2022/]
(1) Circuit generates gravitational states

(3) Creation of two entangled qubits (ERP pair) at A (probe and reference)
(4) SWAP the probe with a qubit in B (气 probe in wormhole)
(5) Circuit with chaotic evolution of the wormhole (probe gets "scrambled")
(6) Entanglement operation between A and B ( $\xlongequal[=]{\text { negative energy } \Rightarrow \text { traversability) }}$
(7) Another circuit with chaotic evolution of the wormhole (moves probe to B)
(8) Determine degree of entanglement between probe ${ }_{B}$ in B and reference ${ }_{A}$ in A - Degree of entanglement has increased $\Rightarrow$ information has been submitted!


## Within holographic duality this means:

The probe is a particle, which has been moved from $A$ to $B$

## Agenda

## Entanglement

Einstein's Field Equation

Black Holes

Properties of Black Holes
$E R=E P R$

Summary

## Summary

- Einstein's Field Equation describes the inner geometry of space-time
- Black holes result as a solution of this equation
- ...and are confirmed by observation
- Black holes have fundamental properties
- Horizon Theorem, No-Hair Theorem, Haking-Radiation,...
- Entropy is proportional to the area of the event horizon
$\Rightarrow$ Holographic Principle
- Wormholes are a special solution of the field equation

Q ...and can be described as entanglement between black holes

- NISQ enables experiments about quantum gravity
- Deep understanding of...
- Entanglement $\Rightarrow \mathrm{ER}=\mathrm{EPR}$
- Spacetime (emergence from Planck-Cells) $\Rightarrow$ It from Qubit


## End

