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Definition

4

  is separable  :⇔ |φ⟩ ∈ ℍ1 ⊗ ⋯ ⊗ ℍn

  with    for 1 ≤ i ≤ n|φ⟩ = |ψ1⟩ ⊗ ⋯ ⊗ |ψn⟩ |ψi⟩ ∈ ℍi

  is entangled  :⇔   is not separable|φ⟩ |φ⟩
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Examples

5

φ+⟩ =
1

2
( |0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)

φ−⟩ =
1

2
( |0⟩ ⊗ |0⟩ − |1⟩ ⊗ |1⟩)

ψ+⟩ =
1

2
( |0⟩ ⊗ |1⟩ + |1⟩ ⊗ |0⟩)

ψ−⟩ =
1

2
( |0⟩ ⊗ |1⟩ − |1⟩ ⊗ |0⟩)

Wn = 1
n
0...001 + 0...010 + 0...100 + ...+ 1...000( )

|Ψn
GHZ⟩ =

1

2
( |0⋯0⟩ + |1⋯1⟩)
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A Phenomenon
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Measuring the first qbit results in 
with probability 1. 

The second qbit will be measured as      
or      with probability 1/2      

This state is entangled 

1
2
00 + 01( )

0

0 1

Measuring the first qbit results in 
 or      with equal probability. 

After that the value of the second 
qbit is already determined!

1
2
00 + 11( )

0 1

(separabel)

1

2
( |00⟩ + |01⟩) = |0⟩ ⊗

1

2
( |0⟩ + |1⟩)



© Frank Leymann

EPR Paradoxon
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Einstein–Podolsky–Rosen Paradoxon 

(1935)

Measuring the first qubit results in 
 or  with equal probability. 

After that the value of the second 
qubit is already determined!

|0⟩ |1⟩

1
2
00 + 11( ) …independent of the physical distance 

at the time of measurement!

⇒ No communication, no interaction 
can take place between the qubits 

(speed of light limits 
the distance at which 

communication and interaction 
can take place)!

This is called non-local 

Physics known by then 
was local!

Einstein:   
Spooky actions   
   at a distance
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roll

Intuition

8

arbitrary distance!

determined state!

Einstein:  
 Hidden variables 

are set at entanglement 
& determine result of measurement 

(≈ realism)
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Entanglement 
as Global Phenomenon
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Entanglement: Importance
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Each computation not involving entangled qubits, 
can be realized classically and  in principle with the same 

efficiency than a quantum computation

 Entanglement is unique for quantum computing!

(R. Jozsa, N. Linden: On the role of entanglement in quantum computational speed-up. 
(2003) arXiv:quant-ph/0201143v2)

 Every quantum algorithm showing exponential speedup 
compared to a classical algorithm, must exploit entanglement.

(but: n qubits ⇒  classical storage | quantum parallelism | …)2n
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Not Only Speedup

13

Most often, speedup is highlighted as quantum advantage

But precision can also be enhanced
E.g. in classification
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r = d :  training data is maximal entangled

Already n = 1 implies :  Risk ≥ 1 −
d2 + d + 1
d(d + 1)

d→∞ 0

…And More…

14

The more test data are used, the smaller is the average error 
in classical supervised learning

≥ 1 −
r2n2 + d + 1

d(d + 1)

The average error in quantum supervised learning is

Risk

r: Schmidt-rank of training data     n: Cardinality of S (training data)   d: Dimension of Hilbert space

A single maximal entangled element of training data suffice in high dimensions 
to learn with low risk a unitary transformation
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Frequency of Entanglement
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Let  be a Hilbert space with  and letℋ dim ℋ = d = 2N

 be all states or all separable states (mixed states)𝔇, 𝔖 ⊆ ℋ

Then,   is exponentially small in N
vol 𝔖
vol 𝔇

S. J. Szarek: Volume of separable states is super-doubly-exponentially small in the number of qubits. 
Phys.Rev. A72 (2005) 032304 (https://arxiv.org/abs/quant-ph/9804024v1)

  Entanglement is ubiquitous 

https://arxiv.org/abs/quant-ph/9804024v1
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R. Oloff:  Geometrie der Raumzeit. Springer 2018.
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R. J. Adler:  General Relativity and Cosmology. Springer 2022.
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Line Element in  
(cartesian coordinates)

ℝ3

17

d(a, b) = (xb
1 − xa

1)2 + (xb
2 − xa

2)2 + (xb
3 − xa

3)2

x1

x2

x3
b = (xb

1 , xb
2 , xb

3)

a = (xa
1 , xa

2 , xa
3) ⇒ d(a, b)2 = (xb

1 − xa
1)2 + (xb

2 − xa
2)2 + (xb

3 − xa
3)2

Distance of two points in :ℝ3

ds2 = dx2
1 + dx2

2 + dx2
3

The so-called line element ds is measuring infinitesimal distances:

= Δx2
1 + Δx2

2 + Δx2
3
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Line Element in  
(arbitrary coordinates)

ℝ2
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γ

α
v = (vα, vγ) = vαα + vγγ

v 2 = ⟨v, v⟩ = ⟨vαα + vγγ, vαα + vγγ⟩
= v2

α ⟨α, α⟩ + vαvγ ⟨α, γ⟩ + vγvα ⟨γ, α⟩ + v2
γ ⟨γ, γ⟩

= v2
α ⟨α, α⟩ + 2vαvγ ⟨α, γ⟩ + v2

γ ⟨γ, γ⟩
⟨α, γ⟩ = ⟨γ, α⟩

def= g11v2
α + g12vαvγ + g22v2

γ (note:  )⟨α, γ⟩ = ⟨γ, α⟩ ⇒ ⟨α, γ⟩ + ⟨γ, α⟩ = 2 ⟨α, γ⟩ = g12

ds2 = g11dx2
1 + g12dx1dx2 + g22dx2

2

The line element ds gives the length of infinitesimal vectors :(dx1, dx2)

ds 2 =
n

∑
i,j=1

gij dxidxj

In :ℝn

The matrix  ist called first fundamental form(gij)
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Line Element in 
Curved Spaces
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U
f

M=f(U)
p

x=f(p)
Tf(p)M

M=f(U) is a curved surface (manifold)
Tangent vectors in x=f(p) build the tangent space  of M in xTxM

 defines a scalar product on  :   gx TxM ⟨v, w⟩x
def= vT(gij(x))w def= gx(v, w)

Reminder: a scalar product induces a metric on a vector space
Thus,  is also called Riemannian Metric on Mgx = (gij(x))

(M, g) is called Riemannian Manifold

First fundamental form depends on x:   (also: )(gij(x)) gx
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Measuring Lengths
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γ

I

t1 t2

γ(I)

s(γ) = ∫
t2

t1

gγ(t) (γ′ (t), γ′ (t))dt

ℝ

 is called arc length of γ or simply length of the curve γ s(γ)
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Reminder: 
Directional Derivative

21

Let ,   ,     and U ⊇ ℝn f : U → ℝ F : U → ℝm v ∈ ℝn

 is directional derivative of f in direction of vDv f = lim
h→0

f(x + hv) − f(x)
h

Writing: Dv f = ∂v f = ∇v f =
∂f
∂v

   and   Dv f = grad f ⋅ v Dei
f =

∂f
∂xi

 (= ) is build component-wise, DvF ∂vF = ∇vF DvF = DF ⋅ v ∈ ℝm

with Jacobi-matrix DF def= ( ∂fi
∂xj )

1≤i≤m, 1≤ j≤n
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Parallel Transport

22

,  is vector fieldX : M → ⋃
p∈M

TpM def= TM X(p) ∈ TpM

Let  be a curve on M.γ : I = [t0, t1] → M
X is parallel along γ :⇔ ∇γ′ (t))X (γ(t)) = 0
(≈ X doesn’t change along the curve -  is directional derivative)∇

γ

γ′ 

X

 V parallel along γ ∀v0 ∈ Tγ(t0)M ∃!V : M → TM : V(γ(t0)) = v0 ∧

 is called parallel transport of Pγ(t0),γ(t1) : Tγ(t0)M → Tγ(t1)M : v0 ↦ V(γ(t1)) v0
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Christoffel-Symbols

23

Let M be an n-dimensional manifold, i.e. dim  = n , TpM ∀ p ∈ M

Let  be vector fields that are a basis for , X1, . . . , Xn TpM ∀ p ∈ M

Then  , with the Christoffel-Symbols ∇Xi
Xj =

n

∑
k=1

Γk
ijXk Γk

ij ∈ ℝ

It is:    with Γk
ij =

1
2 ∑

r

gkr (
∂gjr

∂xi
+

∂gir

∂xj
−

∂gij

∂xr ) (gkr) def= (gkr)−1

(d.h. the Christoffel-Symbols are determined by the partial derivatives of the metric)
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Directional Derivatives and 
Christoffel-Symbole

24

Let    and    be arbitrary vector fields X = ∑ xiXi Y = ∑ yjXj

It is: zk = ∑
i,j

Γk
ijxiyj + ∑

i

xi ∇Xi
yk

(d.h. the directional derivatives are determined by the Christoffel-Symbols)

(…and, thus, by the partial derivatives of the metric)

Then: ∇XY = ∑ zkXk

Let  be vector fields that are a basis for X1, . . . , Xn TpM
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Holonomy

25

A

B

Cα

v

w

The tangent vector v at A of curve AB
is parallel transported along AB

The resulting vector at B is parallel
transported along curve BC

The resulting vector w at A is in general not the original vector v!

The angle α between v and w is a measure for the curvature of M

M

This phenomenon is referred to as  holonomy

The resulting vector at C is parallel
transported along curve CA
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Riemannian Curvature

26

Let X, Y, Z be vector fields
 the curves defined by X, Yδ, γ

Z is parallel transported along
… X with  and Y with Pδ(s0),δ(s1) Pγ(t0),γ(t1)
… −X with  and −Y with Pδ(s1),δ(s0) Pγ(t1),γ(t0) Z

Pγ(t0),γ(t1)

Pδ(s0),δ(s1)
Pδ(s1),δ(s0)

Pγ(t1),γ(t0)

v

X

Y
Holonomy ⇒ v ≠ Z( )  ⇒ curvature!δ(0)
Via  and  the curves become infinitesimals1 → s0 t1 → t0
and an indicator of the curvature at q =  resultsδ(s0)

⇒  Pγ(t1),γ(t0) ∘ Pδ(s1),δ(s0) ∘ Pγ(t0),γ(t1) ∘ Pδ(s0),δ(s1)(Z) = v

⇒ lim
t1→t0

lim
s1→s0

Pγ(t1),γ(t0) ∘ Pδ(s1),δ(s0) ∘ Pγ(t0),γ(t1) ∘ Pδ(s0),δ(s1)(Z ) = (∇X ∇Y − ∇Y ∇X − ∇[X,Y ]) Z def= R(X, Y )Z

No assumptions are being made about a space
"embracing" the manifold M: inner geometry!

Otherwise: outer geometry!
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Ricci Curvature

27

R(X,Y)Z defines for  a multi-linear mapp ∈ M

Rmp : TpM × TpM × TpM → TpM

as follows: for  fixed, define  as Y, Z ∈ TpM ΦY,Z
p : TpM → TpM

ΦY,Z
p (X) := Rmp(X, Y, Z) = R(X, Y )Z

Then, ,   is called Ricci-MapRicp : TpM × TpM → ℝ (Y, Z) ↦ Tr ΦY,Z
p

With , ,  is the Ricci-Curvature in direction of XX ∈ TpM X = 1 Ricp(X, X)

Then  is called Ricci-scalar or scalar curvatureR := ∑
i,j

gijRij

Define Rij :=
n

∑
a=1

∂Γa
ij

∂xa
−

n

∑
a=1

∂Γa
ai

∂xj
+

n

∑
a=1

n

∑
b=1

(Γa
abΓb

ij − Γa
ibΓb

aj)
(d.h. the  are defined by means of the Christoffel-Symbole and their derivatives, i.e. by the metric)Rij
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Geodesics

28

A curve  is called geodesic :⇔ γ : I → M ∇γ′ γ′ = 0
The tangent vector  does not change along the curveγ′ 

The curve has no curvature within M

Locally, a geodesic is always the shortest connection between two points

p

q

(A geodesic on a sphere is always a segment of a  great-circle:  
the red geodesic is the shortest connection between p and q, but the green geodesic  
connects p and q too [but is not the shortest connection]) 

d2γi

dt2
+ ∑

j,k

Γi
jk

dγj

dt
dγk

dt
= 0

A curve  is a geodesic ⇔ For 1≤i≤n:γ = (γ1, . . . , γn)

(Reminder: the  are determined by the metric and its partial derivatives!)Γi
jk
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Einstein’s Field Equation

29

Rμν −
1
2

Rgμν =
8πG
c4

Tμν

Ricci Tensor

Scalar 
Curvature

Metric Stress-Energy 
Tensor

MatterGeodesicsCurvature

Matter (Stress-Energy Tensor) 
results in cuvature (Ricci Tensor) of space-time,
such that particles move on geodetics (metric)

(a system of 16 partial differential equations of 2nd order)
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Schwarzschild-Metric

30

Let M be a mass, that neither rotates nor is it charged

Outside M in its nearby environment, there are no other masses

Then:   (vacuum field equation)Tμν = 0

⇒ solution (in spherical coordinates) is the so-called Schwarzschild-Solution:

ds2 = − c2 (1 −
2GM
c2r ) dt2 + (1 −

2GM
c2r )

−1

dr2 + r2 dθ2 + r2 sin2 θ dϕ2

Solution has two singularities at  and at        (Schwarzschild Radius)r = 0 rS :=
2GM

c2

In proper coordinates,  is no longer a singularityrS

Singularity at  is a proper singularity (i.e. independent of any chosen coordinate system)r = 0
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(Anti-) de Sitter

32

Field equation with cosmological constant: Rμν −
1
2

Rgμν+Λgμν =
8πG
c4

Tμν

Λ has been introduced by Einstein in order to get a static universe
But: in the meantime we know that the universe is not static

New observations can be explained with Λ
 ⇒ anti-gravitation ("dark energy") ⇒ expansion of the universeΛ > 0
 ⇒ contraction of the universeΛ < 0

Vacuum solutions with cosmological constant:
de Sitter space ( ) ⇒ constant positive curvature (≙ sphere)Λ > 0

…matched by observations
Anti de Sitter space ( ) ⇒ constant negative curvature (≙ saddle surface)Λ < 0

space does not expand
…does not match observations
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Entanglement

Einstein’s Field Equation

Black Holes

Properties of Black Holes

ER = EPR

Summary

Agenda

W. Schmitz: Understanding Relativity. Springer 2022.
D. Grumiller, M. M. Sheikh-Jabbari: Black Hole Physics. Springer 2022.

M. Camenzind: Faszination kompakte Objekte. Springer 2021.
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Escape Velocity

34

…is the velocity  , which a mass m at a distance rvF
from a mass M must have to escape from M

I.e. the kinetic energy of m must be equal to
the binding energy within the gravitational field of M:

Earth:  km/svF = 11,2
Sun:  km/svF = 617,4

1
2

mv2
F =

GMm
r

vF =
2GM

r
⇒ 
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Event Horizon

35

With  the escape velocity becomes  !r = rS =
2GM

c2
vF =

2GM
rS

= c

⇒ From this area even light cannot escape !

⇒ This area appears to be completely black:  black hole 

Out of the area within the Schwarzschild radius, no information at all
can reach us, i.e. this area is for external observers eventless.

Thus, the sphere with radius  is called event horizonrS
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Entanglement

Einstein’s Field Equation

Black Holes

Properties of Black Holes

ER = EPR

Summary

Agenda

D. Grumiller, M. M. Sheikh-Jabbari: Black Hole Physics. Springer 2022.
M. Camenzind: Faszination kompakte Objekte. Springer 2021.

G. Musser: Emergence in Condensed Matter and Quantum Gravity. Springer 2022.
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Cosmic Censorship

43

Penrose-Hawking Theorems prove:

Singularities are consequences of gravitational collapse,
all collapsed matter will be concentrated to a single point.

Do singularities exist, which are not surrounded by an event horizon,
i.e. that are directly observable (so-called naked singularities)?

Naked black holes do not exist.

Conjecture (up to now without proof):
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Surface Gravity

44

Gravitational acceleration g at the surface r of a mass M

results from    d.h.   mg =
GmM

r2
g =

GM
r2

With  the gravitational acceleration   r = rS =
2GM

c2
κH

at the event horizon is:    κH =
GM

(2GM/c2)2
=

c4

4GM

 is called surface gravity at the event horizonκH

The surface gravity  at the event horizon is constant.κH
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Horizon Theorem

45

Given two black holes of masses , which mergeM1, M2

The mass of the merged black hole is then M = M1 + M2

The Schwarzschild radius of the merged black hole is:

rS =
2GM

c2
=

2G(M1 + M2)
c2

=
2GM1

c2
+

2GM2

c2
= rS,1 + rS,2

The surface area of the horizon of the merged black hole is:

AH = 4πr2
S = 4π(rS,1 + rS,2)2 = 4πr2

S,1 + 4πr2
S,2 + 8πrS,1rS,2

= AH,1 + AH,2 + 8πrS,1rS,2 > AH,1 + AH,2

The horizon area  of black holes cannot shrink.AH

(experimental confirmation via measurements of gravitational waves in 2021)

Frank Leymann
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Decay of Black Holes?

46

Assumption: A black hole of mass  decaysM = M1 + M2

into two black holes of masses M1, M2

As shown before: AH = AH,1 + AH,2 + 8πrS,1rS,2 > AH,1 + AH,2

⇒ By decay, the horizon area would shrink: contradiction!

A black hole cannot decay (into black holes of smaller masses).
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No-Hair-Theorem

47

Black holes have no hair

All properties of a black hole are completely determined
by its mass M, its angular momentum J and its electric charge C. 

I.e. no other physical quantities (magnetic field, number of particles, 
their spin,…) influence the properties of a black hole

These additional quantities ("hair") are irrelevant for black holes

Problem: What happened to this corresponding information? (see later)

But the particles that collapsed into the black hole had these quantities!
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Vacuum Fluctuation

48

Reminder: Heisenberg Uncertainty Relation  Δv (A) ⋅ Δv (B) ≥
1
2 ⟨[A, B]⟩v

This gives:   mit ΔE Δt ≥
ℏ
2

ℏ :=
h

2π

 ⇒ for a small period of time  a mass  can come into existenceE = mc2 Δt Δm

Conservation laws of physics: this matter consists of particle/antiparticle pairs

≈ Conception: in the vacuum these pairs are created permanently,

but they are destroyed in a very short time  ("annihilation")

"The vacuum is fluctuating"
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Evaporation of 
Black Holes

49

Close to the event horizon,  are created because of vacuum fluctuationT, T̄

Assumption:  (or T) falls into the black hole, T (or ) escapesT̄ T̄
⇒ No annihilation possible: Violation of the conservation of energy!

Analysis: The energy of  is negative (⇒ conservation of energy)!T̄

⇒  has negative mass ( )T̄ E = mc2

⇒ The black hole is loosing mass
"Evaporation of the black hole"

tevaporation = 2.1 × 1067 ( M
M⊙ )

3

[years]

Stellar black holes ( ) ⇒  (age of the universe)M ≥ M⊙ tevaporation > 1067 [years] ≫ 1.4 × 1010 [years]
⇒ Evaporation is irrelevant at present! (but: primordial black holes!)

TT̄
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Macro-/Microstates

50

A system consists of N particles. We distinguish:
Microstate: state of an individual particle of the system
Macrostate: overall state of the whole system

The macrostate result from the microstates
Example: The macrostate of a gas (temperature, pressure,…) results from the  
microstates (location, momentum) of the gas particles.

Let  be the probability that the i-th particle is in a certain microstatepi

Phase space: set of all possible microstates

Configuration: particular probability distribution of the microstates
(each point in the phase space has an associated probability)
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Entropy

51

 S := − kB

N

∑
i=1

pi ⋅ ln pi

Information that is needed to determine the configuration
of a certain macrostate is called entropy S

The term has its origin in thermodynamics

There it is proven:         (Q: amount of heat, T: temperature)dS =
dQ
T

Second law of thermodynamics:    dS ≥ 0
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Quantum Mechanical 
Interpretation of Entropy

52

The microstate of particle i is the point  in Hilbert space| i⟩

The corresponding macrostate is the density matrix ρ = ∑ pi | i⟩⟨i |

von Neumann entropy of  is     ρ S := − Tr(ρ ln ρ)

Quantum physical entropy corresponds up to the factor kB
to the information theoretical entropy

The phase space is substituted by the Hilbert space
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Summary: Entropy

53

Entropy measures the information needed

based on the distribution of its microstates

to completely describe the macrostate of a system

Entropy can never decrease

Things with entropy have a temperature 
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The entropy of a black hole is        S =
kB

4𝔏2
P

AH

Bekenstein-Hawking Formula

54

A body with mass m and entropy S falls into a black hole

Because entropy cannot decrease, the otherwise lost entropy
must correspond to the increase of the horizon area

⇒ The horizon area is a measure for the entropy of the black hole

with the Planck Length    (≈ 1,616 ·  m)𝔏P = Gℏ/c3 10−35

(smallest length in which space can be subdivided; everything smaller that  collapses to a black hole) 𝔏P

⇒ Entropy outside the event horizon is reduced
Because: the information content of the body is no longer available outside!

⇒ The mass and, thus, the horizon area of the black hole increases rS = 2GM
c 2A

H = 4πr 2
S
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Hawking Radiation

55

Remember: Things with entropy have a temperature

Temperature of a black hole is   T =
ℏc3

8πGMkB
=

ℏ
2πckB

κH

But a body with a temperature emits thermal radiation
⇒ a black hole radiates: contradiction(!)

because nothing can escape a black hole!

Solution: this radiation corresponds to the particles, that are created
by the evaporation of the black hole

Note: T ∝
1
M

⇒ By radiating, the black hole loses mass, thus, it gets hotter until it explodes!
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Holographic Principle

56

Information content of a black hole 
proportional to the number of potential microstates within the black hole

Thus, information content should be proportional to the volume of the black hole
…because the particles are scattered across the volume of the black hole

But the information content is proportional to the horizon area S =
kB

4𝔏2
P

AH

The degrees of freedom of the microstates correspond 1−1 
to the degrees of freedom at the horizon :  Holographic Principle

The horizon is like a hologram of the inner of the black hole

(t’Hooft, Susskind)

Via entanglement the number of degrees of freedom in the 
volume becomes proportional to its enclosing surface(*) 

(*) W. Schmitz: Understanding Relativity. Springer 2022 — Ch. 15.1

   All information about the inner is encoded on the horizon
L. Susskind: The world as a hologram. arXiv:hep-th/9409089v2 (1994)
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S =
kB

4
AH

𝔏2
P

⇒ Entropy is the number 
of Planck Cells  

on the horizon 
(up to a factor)

AH /𝔏2
P

Horizon Area & Information

57

"Information equates surface"

Planck Cell  is the 
smallest area, which  

can carry information: 
Planck Cell ≙ 1 Qubit

𝔏2
P

"It from Qubit"
Spacetime Quantum Information

The same can be shown for the horizon of the whole universe   

(Quelle: https://mathoverflow.net/q/144405)

Planck Cell  𝔏2
P

( = 2.61 10−70m2)

Information unit

Triangulated Event Horizon

https://mathoverflow.net/q/144405


© Frank Leymann

Information & Gravitation

58

S =
kB

4𝔏2
P

AH

The event horizon is just thus big to fit the information content of all matter 
that has fallen into the black hole on its horizon

This information content determines the horizon area and, thus,  

the Schwarzschild radius rs =
AH

4π
=

𝔏P

πkB
S

This information content determines also the surface gravity κH =
GM
r2
S
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Interpretation
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The entropy and, thus, the information content of a black hole 
determines the curvature of space-time "close" to the black hole

Gravity does not exist at microscopic scales 
(Planck Length)

Space-time consists of smallest structures (Planck Cells), 
each of which carry 1 Qubit of information

The qubits of the Planck Cells are entangled

Gravity is a macroscopic effect of entropy and information

(W. Schmitz: Understanding Relativity. Springer 2022 — Ch. 11.5)
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Spacetime via Emergence

60(*) B. Swingle: Spacetime from entanglement. Ann.Rev.Condensed Matter Phys. 9 (2018) 

Spacetime is a phenomenon of emergence, it is no longer fundamental

"It from Qubit"

Spacetime is a fabric, it emerges from entangling qubits that represent Planck cells(*)

(but nobody knows yet what these qubits are made of)
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Information Paradox

61

Before falling into a black hole, particles have more properties than just  
mass, angular momentum J and its electric charge — i.e. those quantities  
that completely determine the properties of a black hole (No-Hair Theorem)

Like spin,…

This additional information is lost when passing the event horizon

When a black hole evaporates, this information is not recovered

    This is a contradiction!    

General Relativity Theory

The collapse is a unitary process, thus, reversible. Especially, the information 
lost can be recovered!

Quantum Physics
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Additional Argument: 
No-Hiding Theorem

62

When information is lost from a subsystem , 
which is part of the composed system , 

this information moves to the subsystem .

ℍA
ℍA ⊗ ℍB

ℍB

Braunstein, S. L., & Pati, A. K. Quantum information cannot be completely hidden in correlations:  
Implications for the black hole information paradox. Phys. Rev. Lett. 98, 080502 (2007).

Information within a closed system is never lost 
(≡ Law of conservation of quantum information)
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Entanglement

Einstein’s Field Equation

Black Holes

Properties of Black Holes

ER = EPR

Summary

Agenda

J. Maldacena, L. Susskind: Cool horizons for entangled black holes. arXiv:1306.0533v2 (2014)
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Wormhole

64

≡ Special solution of Einstein’s Field Equation(**)

(*) H. Weyl: "Feld und Materie". Annalen der Physik. 65 (14), (1921)

Introduced by H. Weyl as a possible construct(*)

(**) A. Einstein, N. Rosen: The Particle Problem in the General Theory of Relativity. Phys. Rev. 48, 73 (1935)

Space-time consists of two "sheets"

The "sheets" are connected by a  
"surface of a cylinder"  

More precise:
Let M be the space-time and  with  Ω ⊆compact,conn M Ω ≈ [0,1] × Σ
and  be a 3-manifold with  ,Σ ∂Σ ≈ 𝕊2

then  is called a wormhole in MΩ

 and  are the horizons of the two connected black holes{0} × ∂Σ {1} × ∂Σ

Horizon ∂Σ

M Ω

Horizon ∂Σ
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A First Indicator
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① State  is created in a black hole A 
② "Some" measurements are performed at the 

horizon of A, and the results are send to B 
via classical communication 

③ This data encodes a process, that is performed 
at B: as a result,  appears in the black hole B

|ψ⟩

|ψ⟩

|ψ⟩

A B

|ψ⟩①

②

③

⇒ In order for  to get from A to B, there must be a connection between A and B: 
a wormhole!

|ψ⟩

A B

Quantum-mechanical computations allow: 

Note the similarity to teleportation, which requires entanglement between A and B

Wormholes and entanglement are equivalent descriptions
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Another Indicator
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QPU_1 QPU_2

Entangled 
Information

QPU_1 and QPU_2 are entangled

Information is submitted from QPU_1 to QPU_2

The state of QPU_1 influences what will actually be submitted

Thus, QPU_2 can learn about the state of QPU_1

Or: at the "2-end" of the wormhole one can learn about the first black hole

Computation with gravitational theory (i.e. wormholes) 
and computations with quantum protocols (i.e. entanglement) 

deliver the same results
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ER = EPR
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[ER] A. Einstein, N. Rosen: The Particle Problem in the General 
Theory of Relativity. Phys. Rev. 48, 73 (1935)

[EPR] A. Einstein, B. Podolsky, N. Rosen: Can quantummechanical 
description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

Wormholes(*)

Entanglement

(*) Wormholes are also called Einstein-Rosen-Bridges

Consequence:  Entanglement between particles origin from wormholes!
J.C. Baez, J. Vicary: Wormholes and Entanglement. Classical and Quantum Gravity, Vol. 31 No. 21 (2014) arXiv:1401.3416v2

ER = EPR: 
Wormholes and entanglement are the same phenomenon

J. Maldacena et al.: Diving into traversable wormholes. Fortschr. Phys., 65(5), 1700034 (2017)
J. Maldacena, L. Susskind: Cool horizons for entangled black holes. arXiv:1306.0533v2 (2013)



© Frank Leymann

Generation of Wormholes 
in Principle

Create a huge set of Bell-pairs

Bell-Pairs

Split the entangle particles into two sets and move them apart in large distance

Separation

Then, collapse each of these particle clouds into a black hole

⇒ Two entangled black holes!

Collapse ⇒ Wormhole
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Hawking Radiation 
& Wormholes

70

Black holes resulting from a "simple" collapse are 
unilateral, i.e. they are not mouth of a wormhole

Mouth of 
wormhole

Hawking 
Radiation

Wormholes

Particles resulting from evaporation of a black hole 
are entangled with the inner black hole

…and, thus, connected with the black hole  
by means of "small" wormholes

By collapse of (a subset of) the emitted particles 
a "big" wormhole with two mouths results

…time required for this process is called Page-Time
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Wormhole Traversability

71(*) L. Susskind: Three Lectures on Complexity and Black Holes. SpringerBriefs in Physics (2020).

(*)

A wormhole cannot be traversed

Microscopic wormholes could be traversable
…and submit information

But one can "meet in the middle"

A wormhole is growing faster than matter can move through it(*)

This can be explained via complexity theory  
(complexity of a circuit needed to create the quantum state of the black hole)
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Experiment: 
Traversable Wormhole

72

Dynamics of quantum systems ≈ Effects of quantum gravity
⇒ With QPUs one can run experiments about quantum gravity(**)

This can be understood as a kind of quantum teleportation

(*) D. Jafferis et al.: Traversable wormhole dynamics on a quantum processor.  Nature volume 612, pages 51–55 (2022)
[BLOG Summary 1: https://ai.googleblog.com/2022/11/making-traversable-wormhole-with.html]
[BLOG Summary 2: https://inqnet.caltech.edu/wormhole2022/]

(*)

Based on holographic duality, i.e.:

This enables quantum circuits whose execution correspond to the dynamics of 
traversable wormholes(*)

This is consistent with ER = EPR !

Effects of negative energy ≡ Operations on entangled qubits

(**) S. Nezami et al.: Quantum Gravity in the Lab: Teleportation by Size and Traversable Wormholes (2021)  
     Part 1 arXiv:1911.06314v2  —  Part II arXiv:2102.01064v1

https://ai.googleblog.com/2022/11/making-traversable-wormhole-with.html
https://inqnet.caltech.edu/wormhole2022/
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Circuit_1 Circuit_2

① Circuit generates gravitational states 
(Black holes A and B)

② Entanglement of these states 
(≡ Wormhole with mouths A & B)

③ Creation of two entangled qubits (ERP pair) at A (probe and reference)  

④ SWAP the probe with a qubit in B (≙ probe in wormhole) 

⑤ Circuit with chaotic evolution of the wormhole (probe gets "scrambled") 

⑥ Entanglement operation between A and B (≙ negative energy ⇒ traversability) 

⑦ Another circuit with chaotic evolution of the wormhole (moves probe to B) 

⑧ Determine degree of entanglement between probeB in B and referenceA in A

A B

Degree of entanglement has increased ⇒ information has been submitted!

Within holographic duality this means: 
The probe is a particle, which has been moved from A to B



© Frank Leymann 74

Entanglement

Einstein’s Field Equation

Black Holes

Properties of Black Holes

ER = EPR

Summary

Agenda
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Summary
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Einstein’s Field Equation describes the inner geometry of space-time
Black holes result as a solution of this equation

…and are confirmed by observation
Black holes have fundamental properties

Horizon Theorem, No-Hair Theorem, Haking-Radiation,…
Entropy is proportional to the area of the event horizon
⇒ Holographic Principle
Wormholes are a special solution of the field equation

…and can be described as entanglement between black holes
NISQ enables experiments about quantum gravity
Deep understanding of…

Entanglement ⇒ ER = EPR
Spacetime (emergence from Planck-Cells) ⇒ It from Qubit
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End


