

Pool games in Various Information Environments

Constantinos Varsos *,† and Marina Bitsaki ‡

[†]Centrum Winskunde & Informatica (CWI) [‡]Computer Science Department, University of Crete

17th Symposium and Summer School On Service-Oriented Computing, Crete

June 25 - July 1, 2023

Outline

1 Introduction

2 Game theory

3 Pool games

4 Pool games with incomplete information

5 Pool games with incorrect information

6 Conclusions

- digital environments, automated procedures, and big data
- intangible, crowd-sourcing, and sophisticated digital transaction methodologies
- transparent transactions, e.g. secured trading in distributed and decentralized environments

- digital environments, automated procedures, and big data
- intangible, crowd-sourcing, and sophisticated digital transaction methodologies
- transparent transactions, e.g. secured trading in distributed and decentralized environments
- Blockchain technology [Nakamoto '08]
- distributed synchronized secure database containing validated blocks of transactions
- blocks are containers holding a record of transactions on the blockchain

Blockchain

- a block is validated by special nodes, called miners, via the solution of a computationally demanding problem, called the proof-of-work puzzle
- miners compete against each other and the first one to solve the problem announces it
- the block is then verified by a predefined agreement protocol called consensus
- added to the distributed database
- the miner that generated the block is rewarded according to a commonly and apriori known protocol

Blockchain

- "Strength in unity", miners form mining pools implemented by a pool manager
- provide partial proof-of-work concurrently
 - 1 evaluates the miners' efforts
 - 2 estimates each miner's power

and share their revenues accordingly

- **utility** of a pool is the total sum of the revenues received by its miners
- block withholding attack, a miner that solves a problem does not submit it after finding one block
- the cost to the miner is trivial but the cost to the pool is large
- ! Game theory [Eyal, IEEE'14], [Di et al, RESS'19]

Pool games

- The information available to a pool: set of its miners, set of adversary pools, and predefined protocols
- a pool may be attacked by a miner from an adversary pool by providing partial proof-of-work to the pool manager
- The attacking miner shares the revenue obtained in the pool but does not contribute, thus the utility of the attacked pool deteriorates and becomes less attractive to other miners [Eyal, IEEE'14]
- partial proof-of-work to opponent pools, called infiltration rate

Setting & Information environments

- Pool game with N pools, $N \in \mathbb{N}$
- pools are of equal capabilities
- all miners are atomic and identical

Setting & Information environments

Three different information environments

Complete-correct information [Eyal, IEEE'14]

" pools know their mining power and estimate correctly the infiltration rates"

Incomplete information

"the pools are **not** aware about the size of the incoming attack"

Incorrect information

" they **think** they know the actual mining power of the pool and the accurate number of incoming attacks"

- Number of pools (N), number of choices (S), the gains that each choice provides to the pools (U)
- Pools try to maximize their gains
- Outcome of the interaction

- Number of pools (*N*), number of choices (*S*), the gains that each choice provides to the pools (*U*) $G = \langle N, S, U \rangle$
- Pools try to maximize their gains
- Outcome of the interaction Nash equilibrium

In a Nash equilibrium no agent has incentives to deviate

Incomplete information

- Bayesian game, $BG = \langle N, S, \Theta, p, U \rangle$
- Pools' types Θ contain all relevant information about certain pools' private characteristics
- A type $\theta_i \in \Theta_i$ is only observed by pool *i*
- utilities are calculated by each pool by taking expectations over types using its own conditional beliefs about opponents' type (ex interim)
- Outcome, Bayes-Nash equilibrium

Incomplete information

- Bayesian game, $BG = \langle N, S, \Theta, p, U \rangle$
- Pools' types Θ contain all relevant information about certain pools' private characteristics
- A type $\theta_i \in \Theta_i$ is only observed by pool *i*
- ex interim expected utility of pool i is

$$\mathbb{E}[U_i(\sigma,\theta_i)] = \sum_{\theta_{-i}\in\Theta_{-i}} p(\theta_{-i}|\theta_i) \mathbb{E}[U_i(\sigma,(\theta_i,\theta_{-i}))]$$

• σ s.t. $\sigma_i \in BR_i(\sigma_{-i}), \forall i \in N$, where $BR_i(\sigma_{-i})$ is the best response of i against $\{-i\}$

Repeated case, utility formulas

$$\frac{1}{T}\sum_{t\in[T]}U_i(\sigma^t,\theta_i),\qquad (1-\delta)\sum_{t\in[T]}\delta^t U_i(\sigma^t,\theta_i),\ i\in[|\mathsf{N}|],\ \delta\in(0,1),\ T>0$$

Incorrect information

- Misinformation game, $mG = \langle G^0, G^1, \dots, G^{|N|} \rangle$
- Pool *i* has the *Gⁱ* game
- *G*⁰ is the actual interaction
- Here, misinformation affects only the values of the payoffs
- Outcome, natural misinformed equilibrium (nme)

Incorrect information

- Misinformation game, $mG = \langle G^0, G^1, \dots, G^{|N|} \rangle$
- Pool *i* has the *Gⁱ* game
- G⁰ is the actual interaction
- Here, misinformation affects only the values of the utilities
- Outcome, natural misinformed equilibrium (nme)
- Repeated case, Adaptation Procedure (*AD*)

$$\mathcal{AD}^{(t)}(M) = \{ mG_{\vec{u}} \mid mG \in M, \vec{u} \in \chi(\sigma), \sigma \in NME(mG) \}$$
$$\mathcal{AD}^{(t)}(M) = \mathcal{AD}^{(t+1)}(M)$$

- *N* pools, *m* miners
- goal: maximize revenue density

- *N* pools, *m* miners
- goal: maximize revenue density ~>> optimize infiltration rates

- N pools, *m* miners
- goal: maximize revenue density ~>> optimize infiltration rates
- revenue density of a pool *i*, $r_i(t)$:

 $\frac{}{\text{average revenue that miner } i \text{ earns}}$

- ! discrete-time step interaction
- ! the total number of miners per pool remains constant throughout the game

At time step t a pool i,

- has in total $m_i(t)$ miners
- commits to the pool $j m_{ij}(t)$ miners

Clearly, $m_i(t) = \sum_j m_{ij}(t)$

- mines with power $m_i(t) \sum_{j \in [|N|] \setminus \{i\}} m_{ij}(t)$,
 - divided by total mining rate then direct mining, R_i
- shares reward among $m_{ii}(t) + \sum_{j \in [|N|] \setminus \{i\}} m_{ji}(t)$
- infiltration matrix

At time step t a pool i,

- has in total $m_i(t)$ miners
- commits to the pool $j m_{ij}(t)$ miners

Clearly, $m_i(t) = \sum_j m_{ij}(t)$

- mines with power $m_i(t) \sum_{j \in [|N|] \setminus \{i\}} m_{ij}(t)$,
 - divided by total mining rate then direct mining, $R_i > m(t)$
- shares reward among $m_{ii}(t) + \sum_{j \in [|N|] \setminus \{i\}} m_{ji}(t)$
- infiltration matrix IR(t)

At time step t a pool i,

- has in total $m_i(t)$ miners
- commits to the pool $j m_{ij}(t)$ miners

Clearly, $m_i(t) = \sum_j m_{ij}(t)$

- mines with power $m_i(t) \sum_{j \in [|N|] \setminus \{i\}} m_{ij}(t)$,
 - divided by total mining rate then direct mining, $R_i > \mathbf{m}(t)$
- shares reward among $m_{ii}(t) + \sum_{j \in [|N|] \setminus \{i\}} m_{ji}(t)$
- infiltration matrix IR(t)

$$\mathbf{r}(t) = \mathbf{m}(t) + \mathbf{IR}(t) \cdot \mathbf{r}(t-1), \quad \mathbf{r}(0) = \mathbf{m}(0)$$

N = 2

• the infiltration rates are $m_{12}(t)$ and $m_{21}(t)$

$$r_1(m_{12}(t), m_{21}(t)) = \frac{m_{22}(t)R_1(t) + m_{12}(t)(R_1 + R_2)}{m_{11}(t)m_{22}(t) + m_{11}(t)m_{12}(t) + m_{22}(t)m_{21}(t)}$$

$$r_2(m_{12}(t), m_{21}(t)) = \frac{m_{11}(t)R_2(t) + m_{21}(t)(R_1 + R_2)}{m_{11}(t)m_{22}(t) + m_{11}(t)m_{12}(t) + m_{22}(t)m_{21}(t)}$$

with $m_{11}(t), m_{22}(t) > 0$ and $m_1(t) + m_2(t) \le m$.

a pool i has two pure strategies, either to attack or to non-attack the adversary [strategy profiles are (attack, attack), (attack, non-attack), (non-attack, attack), and (non-attack, non-attack)]

• ordering for the density revenues of the pools [Eyal, IEEE'14]

$$\begin{aligned} & \text{For Pool}_{1}: \left\{ \begin{array}{l} (attack, non - attack) > (non - attack, non - attack) \\ (attack, attack) > (non - attack, attack) \\ & \text{For Pool}_{2}: \left\{ \begin{array}{l} (non - attack, attack) > (non - attack, non - attack) \\ (attack, attack) > (attack, non - attack) \\ & (attack, attack) > (attack, non - attack) \\ \end{array} \right. \end{aligned}$$

payoff matrix

Pool ₂ Pool ₁	attack	non-attack
attack	(r_1, r_2)	(r_1, \tilde{r}_2)
non-attack	(\tilde{r}_1, r_1)	$(\tilde{r}_1, \tilde{r}_2)$

• ordering for the density revenues of the pools [Eyal, IEEE'14]

$$\begin{aligned} & \text{For Pool}_{1}: \left\{ \begin{array}{l} (attack, non - attack) > (non - attack, non - attack) \\ (attack, attack) > (non - attack, attack) \\ \end{array} \right. \\ & \text{For Pool}_{2}: \left\{ \begin{array}{l} (non - attack, attack) > (non - attack, non - attack) \\ (attack, attack) > (attack, non - attack) \\ \end{array} \right. \end{aligned}$$

payoff matrix

Pool ₂ Pool ₁	attack	non-attack
attack	(r_1, r_2)	(r_1, \tilde{r}_2)
non-attack	(\tilde{r}_1, r_1)	$(\tilde{r}_1, \tilde{r}_2)$

Prisoners' Dilemma (unique Nash equilibrium)

Figure: Pool game with $N = {\text{Pool}_1, \text{Pool}_2}$.

Setting

Infiltration rates estimation has a level of uncertainty. At time step t,

- Pool₂ estimates with probability p_1 that Pool₁ attacks with the correct infiltration rate $m_{12}(t)$ and with probability p_2 that Pool₁ attacks with infiltration rate $\hat{m}_{12}(t)$, with $p_1 + p_2 = 1$
- Pool₁ does not experience any uncertainty in the estimations, and believes that Pool₂ attacks with the correct infiltration rate $m_{21}(t)$

Setting

- Bayesian game, $BG = \langle N, S, \Theta, p, U \rangle$
 - Pool₁ has one type $\Theta_{\mathsf{Pool}_1} = \{\theta_{\mathsf{Pool}_1,1}\}$
 - Pool₂ has two types $\Theta_{\mathsf{Pool}_2} = \{\theta_{\mathsf{Pool}_2,1}, \theta_{\mathsf{Pool}_2,2}\}$

Pool ₂ Pool ₁	attack	non-attack
attack	(r_1, r_2)	(r_1, \tilde{r}_2)
non-attack	(\tilde{r}_1, r_2)	$(\tilde{r}_1, \tilde{r}_2)$

Table 1. Types: $\theta_{\mathsf{Pool}_1,1}, \theta_{\mathsf{Pool}_2,1}$

Pool ₂ Pool ₁	attack	non-attack
attack	(r_1, r_2')	(r_1, \hat{r}_2)
non-attack	non-attack (\tilde{r}_1, r'_2)	

Table 2. Types: $\theta_{\text{Pool}_1,1}, \theta_{\text{Pool}_2,2}$

Theoretical results

Lemma: Polynomial infiltration rates

Consider a Bayesian Pool game BG with |N| pools. If for all Information types $i \in \Theta$ in the BG, $m_j^i(t)$, $m_{jk}^i(t)$ are non-zero polynomials of equal degree $d \in \mathbb{N}$ with non-negative coefficients such that $m_{jj}^i(t) \ge \sum_{k \setminus \{j\}} m_{jk}^i(t) \ \forall i \in [|N|]$ and $\forall t \in \mathbb{N}$, then the pool density revenues converge.

Lemma: Spectrum of IR

Consider a Bayesian Pool game BG with |N| pools. If for all Information types $i \in \Theta$ in the BG, $\mathbf{m}^{i}(t)$ are bounded, and $\mathbf{IR}^{i}(t)$ are such that $\|\mathbf{IR}^{i}(t)\| \leq 1 \ \forall t \in \mathbb{N}$, then the pool revenues converge.

Numerical results

 $(ext{upper}) \ m_{ij}(t) \in \mathbb{P}_1$ $(ext{lower}) \ m_{ij}(t) \in \mathbb{P}_3$ non-negative coefficients

Initial infiltration rates

$m_{11}(0)$	$m_{12}(0)$	$m_{21}(0)$	$m_{22}(0)$	р
80	20	30	70	.7
90	10	40	60	.3

Setting

- the pools have incorrect information regarding the mining power and the density revenues.
 At time step t,
 - actual situation in Table 3
 - Pool₁ knows the Pool game in Table 4
 - Pool₂ knows the Pool game in Table 5

	<i>s</i> ₁	<i>s</i> ₂		s_1	<i>s</i> ₂		s_1	<i>s</i> ₂
<i>s</i> ₁	(r_1, r_2)	(r_1, \tilde{r}_2)	s_1	(\dot{r}_1, \dot{r}_2)	(\dot{r}_1, \hat{r}_2)	<i>s</i> ₁	(\bar{r}_1, \bar{r}_2)	(\bar{r}_1,\hat{r}_2')
<i>s</i> ₂	(\tilde{r}_1, r_2)	$(\tilde{r}_1, \tilde{r}_2)$	<i>s</i> ₂	(\hat{r}_1, \dot{r}_2)	(\tilde{r}_1, \hat{r}_2)	<i>s</i> ₂	(\hat{r}_1', \bar{r}_2)	$(\tilde{r}_1, \hat{r}_2')$

Table 3.Actual Game

Table 4.Pool1game

 Table 5.
 Pool₂ game

Setting

- the pools have incorrect information regarding the mining power and the density revenues.
 At time step t,
 - actual situation in Table 3
 - Pool₁ knows the Pool game in Table 4
 - Pool₂ knows the Pool game in Table 5

	<i>s</i> ₁	<i>s</i> ₂		<i>s</i> 1	<i>s</i> ₂		s_1	<i>s</i> ₂
<i>s</i> ₁	(r_1, r_2)	(r_1, \tilde{r}_2)	<i>s</i> ₁	(\dot{r}_1, \dot{r}_2)	(\dot{r}_1, \hat{r}_2)	<i>s</i> ₁	(\bar{r}_1, \bar{r}_2)	(\bar{r}_1,\hat{r}_2')
<i>s</i> ₂	(\tilde{r}_1, r_2)	$(\tilde{r}_1, \tilde{r}_2)$	<i>s</i> ₂	(\hat{r}_1, \dot{r}_2)	(\tilde{r}_1, \hat{r}_2)	<i>s</i> ₂	(\hat{r}_1', \bar{r}_2)	$(\tilde{r}_1, \hat{r}_2')$
								-

Table 3.Actual Game

Table 4.Pool1game

 Table 5.
 Pool₂ game

misinformed Pool game mG

Adaptation procedure

- Given the *nme*, \mathcal{AD} will evaluate the information of the pools
- \blacksquare \mathcal{AD} will proceed to the next time step. The density revenues matrices will take the form

	<i>s</i> ₁	<i>s</i> ₂		s_1	<i>s</i> ₂		<i>s</i> ₁	<i>s</i> ₂
<i>s</i> ₁	(r_1, r_2)	(r_1, \tilde{r}_2)	<i>s</i> ₁	(r_1, r_2)	(\dot{r}_1, \tilde{r}_2)	<i>s</i> ₁	(r_1, r_2)	$(ar{r}_1, \hat{r}_2')$
<i>s</i> ₂	(\tilde{r}_1, r_2)	$(\tilde{r}_1, \tilde{r}_2)$	<i>s</i> ₂	(\hat{r}_1, \dot{r}_2)	(\tilde{r}_1, \hat{r}_2)	<i>s</i> ₂	(\hat{r}_1', \bar{r}_2)	$(\tilde{r}_1, \hat{r}_2')$
			— .					

Table 3.Actual Game

Table 6. Pool₁ game

Table 7. Pool₂ game

Theoretical results

Lemma: Polynomial infiltration rates

Consider the finite misinformation Pool game mG, then if $m_j^i(t)$, $m_{jk}^i(t)$ are non-zero polynomials of equal degree $d \in \mathbb{N}$ with non-negative coefficients such that $m_{jj}^i(t) \geq \sum_{k \setminus \{i\}} m_{ik}^i(t) \ \forall i \in [|N|]$ and $\forall t \in \mathbb{N}$, then the pool density revenues converge.

Lemma: Spectrum of IR

Consider the finite misinformation Pool game mG, $\mathbf{m}^{i}(t)$ are bounded, and $\mathbf{IR}^{i}(t)$ are such that $\|\mathbf{IR}^{i}(t)\| \leq 1 \ \forall t \in \mathbb{N}$, then the pool revenues converge.

Numerical results

 $egin{array}{lll} ({
m upper}) \; m_{ij}(t) \in \mathbb{P}_1 \ ({
m lower}) \; m_{ij}(t) \in \mathbb{P}_3 \end{array}$

non-negative coefficients

Initial infiltration rates

Game	$m_{11}(0)$	$m_{12}(0)$	$m_{21}(0)$	$m_{22}(0)$
G^0	80	20	30	70
G^{Pool_1}	90	10	40	60
G^{Pool_2}	70	30	20	80

Adaptation procedure

- Blockchain interactions, pool games
- improve the results of [Eyal, IEEE'14]
- transfuse the pool game setting to the incomplete and the incorrect information cases
- provide theoretical results
- ! develop mechanisms/protocols to regulate the efficiency of a pool game
- ! study situations other than the block withholding attack scenario

Thank you!