dortmund

SEAL — Software Engineering by Algorithms and Logic - :
; ; university

GENERATING SIMULATION MODELS FROM COMPONENTS:

Industrial use cases in design space exploration and machine learning

Jakob Rehof, TU Dortmund University

WWW.GITHUB.COM/TUDO-SEAL oummerSoc 2023

SEAL — Software Engineering by Algorithms and Logic

02

CONSTANTIN
CHAUMET

SE[AJL

Researcher at SEAL Research Group
Focus on Robotics and Design Automation
Developer of CLS-CAD

Maker of Slides

WWW.GITHUB.COM/TUDO-SEAL

SEAL — Software Engineering by Algorithms and Logic

03

AGENDA.

A short overview of presented topics.

01

(CL)S FRAMEWORK

Intent of- and Information about the
(CL)S framework

02

USE-CASE: MOTION PLANNING

Application of the (CL)S framework and
the HyperMapper to explore the motion

planning design space.

03

USE-CASE: CAD SYNTHESIS

Application of the (CL)S framework to
synthesize complete CAD assemblies and

in future optimize key metrics.

04

WRAP-UP

Short summary of presented contents.

(CL)S Framework

04

WWW.GITHUB.COM/TUDO-SEAL/BCLS-PYTHON

(CL)S

COMBINATORY
LOGIC
SYNTHESIZER

THE (CL)S FRAMEWORK IS A LANGUAGE-AGNOSTIC AND FORMALLY
VERIFIED FRAMEWORK THAT IS ABLE TO GENERATE ALL
COMBINATIONS OF MODULAR COMPONENTS THAT SATISFY A
PARTICULAR REQUEST/SPECIFICATION.

(CL)S Framework 05

HOW IT WORKS.

INHABITATION REQUEST> ENUMERATION > INTERPRETATION >
01 02 03 04
REPOSITORY TREE GRAMMAR TERMS ARTIFACT
A set of combinators with types. The The grammar that describes all terms that An enumeration of the terms present in The interpretation of the terms resolves
types define how the combinators can be are inhabitants of the requested type. the grammar. Multiple different the applications etc. to concrete artifacts.

applied to each other and thus combined. approaches are possible.

Basic synthesis pipeline of CLS-framework

— Input Goal Type

Combinatory
Meta-Programs

Inhabitati lgorithm for CL m
nnapitation algori or BT I — Output Programs
/<\K
L ISK ((18)K) L /f setup cards
for (int 1= 0; 1 <8; ivt) {
/>\ fieldColumns[i] = new Column(CobunnsPrefix + (i+1));
2 1(SK) (1(SK)) G SldMmAnT T ek £ £3n1 Ar it TE7
fie ¢/ setup cards
fie for (int 1 = 2; i < 8; i+) {
1 add fieldColumns[i] = new Column(CobunnsPrefix + (i+1));
x addModelElement (fieldColumns[i]);
= i fieldcolumnviews[1] = new Columnview(fieldColumns[i]);
Y SKISKI ((SKDSIKL [“x fie fieldColumnvieus[1]. setBounds (45+15* i+i*cw, 42 + ch, cw, 13*ch);
fie addviewnidget (fieldcolumnviews[i]);
fie
> » /{ﬁ’ ’} /f register controllers
= fieldcolumnvieus[{]. sethouselotionfdapter (new SolitaireMousetiotionsdapter (this));
for (in fieldcolumnvieus[i]. setUndohdapter (new SolitairelndoAdapter (this));
4 S(KI)(SK)T (SUKTSK)) |§ ® 1 fie fieldColumnvieus[i]. setl pter (new ColumnController (this, fisldColumnviews[i]));
add T
5 fie . . .
¥ fic for (int 1= @; i <45 i+ {
v add ficldHomePiles[i] = new Pile (Homepilesprafix + [i+1));
8 addModelElement (fieldHomePiles[i]);
5. S{K(I(S(KT)})) (S{K(I(S(KT))))} K o1 7 ficldHomePileviews[i] = new Pileview(ficldHomePiles[i]1;
fie fieldHomePileviews[i]. setBounds(125+15%i+(i+a)%cn, 28, ew, ch;
T fie addviendidget (fleldHemePileviews[i]);
In the forms with minimal parentheses, not every subsequence of i
symbols is well formed (i.e., has balanced implicit parentheses). Tn ¥ 4/ register controllers
1, notice that 8K is not a balanced subterm, and does not correspond fieldHomePileviews[1].setMouseMotionAdapter (new SolitaireMouseMotionAdapter (this));
t0 a subtree in the tree diagram. If 3 arose in a derivation, we could fieldHomePileviews[i].setUndoAdapter [new SolitairelndoAdapter (this));
not apply Rule 2 to the form KIS, because that is not a well-formed fieldHomePilevieus[i]. sethousesdapter (new HemepilepileController (this, fieldemePileviews[i]))
portion, nor could we apply Rule 1 to the form IS. Similarly in 4, }
(KI)(SK) and (SK)I are not well formed.

Tree grammar of all

— N i
N I solutions

component
repository

N~

Design space exploration and learning with CLS-framework

goal type

>

Ii={

PlannerAssembly:

any_planner — any_state_validator —
any_motion_validator — any_simplification —

sbmp_input — sbmp_program,

PRMStarSchema :

(any_opt_obj — sampler_space — PRMStar) N
(any_opt_obj — sampler_valid state — PRM Star) N
(any_opt_ob j — sampler_informed — PRMStar),

ESTSchema:
obj_path — sampler_valid state — EST,

]
}

Fig. 3. Excerpt of the semantic repository I’y showing the type signature
of the combinators PlannerAssembly, PRMStarSchema, and ESTSchema

—
-

component
repository

SN—

—
1

Inhabitation problem in CL

— (CLJS g

Executable programs

Generate

sample-based
motion plans

Execute, test, measure

FLod 6ol umrwvTams | L], satmousanat Conksapter (e Sal(tedramousenct (onadapter (This));
flelicalumvions] £] setindordter (new Sol{talreundordacter (this));

Wiews[L] Sethmsiertigter (s Columiontralor (this, fledacolumwions[(])))

_—

Computation Time [s]

Vlel rom P el et | Laviaws[£], setmisent Lonaboptor (me S63Talrammenat Lonatapter [1Aks
fLelsmomed i Leviews| £ | setUndodapter (mew Solitalreundorssprer (tASN));

Lol dnimet | Levians [£] setiousatdastor (rev Wimer(lerl oller (WMs, Tleldumeriloviensii)))

Ll Bamet | L evTons[£], setmosewot Lonadapter {mme L0350 adrammaenat Lonatester (1AL
fLel dmamet i leviows[{]. setUndordapter (mew Solitalreindordepter (this));
fleltvomer Llaviews [{] sethootdnter (mew et [lerliecortroller (WNs, flelosmer(laviess(l)))

Learn
Configuration Result vector
vector
< Hypermapper
v
30 m Planners (Symbol):
B EST
- ® SBL
4+ STRIDE
Sampling Strategy (Color):
20 n Il Gaussian valid state
- +¢ + Max. clearance valid state
5 I Uniform valid state
]. Il Obstacle-based valid state
my =
10 » o o P " ®
|
F (] il +
5
600 700 800 900 1000 1100

Solution Path Length [arbitrary unit]

USE-CASE: MOTION PLANNING 06

MOTION
PLANNING

TACKLING A FUNDAMENTAL PROBLEM OF ROBOTICS WITH (CL)S:
FINDING A COMPROMISE BETWEEN PERFORMANCE METRICS.

WWW.GITHUB.COM/TUDO-SEAL/BCLS-PYTHON

Schafer, Bessai, Chaumet, Rehof, Riest: Design Space Exploration for Sampling-based Motion Planning Programs with Combinatory Logic Synthesis, WAFR 2022

USE-CASE: MOTION PLANNING

A P P I a OA(I I Algorithm Feature
¢ Space Definition
Black-box Function (Inhabitation + Evaluation)
| Input Algorithm | Algorithm Feature
Motion Planning Program Design Space: | Configuration x € X ’ Model
* Planner 4
Io: Combinator Customized . C.LS "
« Sampler Implementations > Repository [3 Inhabitation Request: 3 Inhabitation Result
Motion Valid Hypermapper 2.0: P pository [E?:1
otion Validator |Design of Experiment,
« Maximum Planning Time Active Learning Loop Result Vector Execution of Multiple
¢ (averaged over G Python Program
. Program Instances
executed instances) i
OMPL: Code
Templates and
Configuration
Tabular
Evaluation Report

PRODUCES GENERATORS FOR PYTHON PLANNING PROGRAMS,
WHICH IN TURN PRODUCE RESULT VECTORS IN R".
THESE RESULTS GET EXTRACTED, COMPARED, AND BECOME PART OF THE HYPERMAPPER LEARNING LOOP.

USE-CASE: MOTION PLANNING

WWW.DOI.ORG/10.1109/

08

HYPER
MAPPER

Black-Box Optimizer using Bayesian Optimization

Often a design space will not have a clearly defined notion of a derivative, making the pareto front

impossible to determine analytically.

The HyperMapper can solve multi-objective optimization problems in such cases, requiring only a set
of input parameters and an evaluation function (multi-objective).

The input parameters are then optimized to minimize the evaluation functions objectives.

An initial pareto front of the objectives is found in the warm-up phase.
The following active learning phase learn a model that approximates the true MOP function,

iteratively improving model and pareto front.

Input Parameters

MASCOTS.2019.00053

HYPERMAPPER

Evaluation Function

WWW.GITHUB.COM/LUINARDI/HYPERMAPPER

USE-CASE: MOTION PLANNING

08
WWW.DOI.ORG/10.1109/

HYPER
MAPPER

Black-Box Optimizer using Bayesian Optimization

MASCOTS.2019.00053

Randomized decision forests

Regression random forests

Injection of prior knowledge (distributions)

Sampling with categorical and discrete parameters

Constrained Bayesian optimization

Input Processing Qutput

- 3 :

qun
<~ Predicted
. R ’ Pareto
L S . Learmning M'ewlﬁahp 8s
r#-'f“"--" — ; 1
Active Learning
! Rt SN
A {ijectiue 1 Pareto Front
egre55nr\| > . Compute
cearch £l> Objective N| £l> Valid
Space
Classifier
[Filter)

e

|
Y

Samples ﬁl]

Machine

Predicted

> [ijlvalidit:-r' | > Pareto
] Obj N Validity J L)

Fig. 3: Active learning with unknown feasibility constraints.

Nardi, L., Koeplinger, D., Olukotun, K.: Practical design space exploration. In: MASCOTS, pp. 347-358. IEEE Computer Society (2019).

WWW.GITHUB.COM/LUINARDI/HYPERMAPPER

02.07.2023

Feature space exploration for sample-based motion planning

OMPL Example [1]

"Escape”: Result path along narrow passage

Function f: X — R, X denotes domain of interest (i.e. design space)
Optimization problem for mono objective : x,i, = argmin f(x), x € X

@ Design space X for planning programs: Planner, sampler, state
validator, motion validator

@ Solution vector in R": Maximal computation time, path length,
computation time, number of failures (i.e. planner failed to return a

result)

@ Multi-objective optimization: explore pareto front

Optimization problem

p2 — Max o : N : : o
3t 09 e Optimization problem is derivative-free due to ordinals, i.e. derivative
Sl f g of f is not available
° I ./__ - e Given problem can be solved via design space exploration (DSE) (also
° [| Cessaoral El referred to as derivative-free optimization (DFO), black-box
‘ A = optimization)
N W2
& 1 e Hypermapper 2.0 [2]
p1 " win o1 o Design of Experiment (DoE) followed by optimization
e Assumes that f is deterministic
Figure: Multi-objective optimization [2] o Bayesian optimization with prior injection
e Random search
o Local search

USE-CASE: MOTION PLANNING

09

VALIDATION

To validate the approach, we combined the approach with

different ongoing research.

ROBOTIC ARM AUTOGENERATION

The (CL)S framework is also able to generate fully functioning robotic arms.

We utilised these to validate the approach on a
* Multitude of planning situations,

* With different robotic arms.

This allowed us to compare the performance of different planner setups for different scenarios,

obtaining sets of pareto-optimal planning configurations.

Synthesized robotic arm with attached simple gripper.

USE-CASE: MOTION PLANNING

11

Scene with path simplification

Planners (Symbol):
24 ® SBL
® RRT
22 x x 4+ STRIDE
®x NN ”x 4+ PRM*
*® Sampling Strategy (Color):

» - x x® % Il Gaussian valid state
@ * ® Bl Uniform valid state
E 18 + = Max. clearance valid state
P ® *. el B Uniform space sampling
.2 ®
:@ 16 -
= +
E 14
o
(&)

12 +

o
10
8 o
4 4.2 4.4 4.6 4.8 5

Solution Path Length [arbitrary unit]

Pareto fronts for computation time and path length

(shorter is better).

Computation Time [s]

PARETO FRONTS

12

11

=
o

Scene without path simplification

+ + Planners (Symbol):
¥ RRT Connect
+ @® Lazy RRT
4+ PRM*
4 SBL
Sampling Strategy (Color):
4+ Il Gaussian valid state
Bl Uniform valid state
I Uniform space samplin
- + p pling
o+
+
+ +
®)
O
[]
oo °
25 .
6 8 10 12 14

Solution Path Length [arbitrary unit]

LEFT

Shortest path easily missed by humans:
* Long computation time

* Unusual combination

RIGHT

Lack of path simplification greatly
favours RRT Connect with Uniform

Sampling.

If human designer doesn’t test specifically
that combination, results are very sub-

optimal.

Computation Time [s)]

Camputation Time [s]

24

22

20

18

16

14

12

10

34

32

3

23

26

24

22

200

18

4.2

4.4

Flanners {Symbol):
x SBL
® RRT
+ STRIDE
&= FRM"
Sarmpling Strategy (Color):
B Gaussian valid state
B nidform valid state
N Max clearance valld state

B Uniform space sampling
+
.
-
4.5 4.8 -]

Solution Path Length [arbitrary unit]

Fig. 6. cylinder with path simplification

5

R

=

6.3

Flanners {Symbol);

X PRM*

® RRT Coninect

+ Lazy RRT

4 RHETE
Sarnpling Strategy (Color):
I Gaussian valid siate
I Cbstacle-based valid state
B Lnidform space sampling

T 7.3 & 8.5

Solution Path Length [arbitrary unit]

Fig. 8. pillars with 5 DoF

Computation Time [s)

Computation Time [s]

12

11

o

10

Flanrers {Symbol);

X RRT Connect

® Lary RRT

+ PRM"

= SBL
Sampling Strategy (Color)
Il Gaussian valid state
B Unidform valid state
B Uniform space sampling

+
+

12 14

Solution Path Length [arbitrary unit]

Fig. 7. cylinder without path simplification

400

is

30

25

20

16

T

+ O

d

Flanners (Symbol):

X PDET

® PRM*

Lazy RRT

4 STHIDE
Sarmpling Strategy (Calar):
Il Caussian valid state
B nidform valid state
N Mar clearancs valid state
B Uniform space sampling

2 10

Solution Path Length [arbitrary unit]

Fig. 9. pillars with 6 DoF

USE-CASE: MOTION PLANNING

WWW.DOI.ORG/10.1007/

12

— 80 — Abstract
> “‘\'___, — Apartment
@ 60 ‘\‘(:7&\/5.; — Home
T cubicles
% 40 — pipedream
8 20
%)

0

40 20 60 70 80 90 100
lteration

.80 — Abstract
X — Apartment
o 60 — Home
L , cubicles
% 40 — pipedream
8 20
=
w

0

40 60 80 100 120 140
lteration

MODEL
TRANSFER

We investigated if the learned models of what makes a good planner can be

transferred to other models.

The plots shown are from path finding problems, e.g. a robot navigating

through an environment.

The model transferred from the problem “Abstract” performed acceptably

well for most of the other problem instances.

The models learned on robotic arms were not transferrable, due to them being

specific to the robot and the robots being inherently very different.

978-3-031-21090-7_3

USE-CASE: CAD SYNTHESIS

13

WWW.GITHUB.COM/TUDO-SEAL/CLS-CAD

SYNTHESIS OF
CAD ASSEMBLIES

RELIEVING CAD SOFTWARE ENGINEERS FROM REPEATING THE
SAME BASIC TASKS OVER AND OVER;

Constantin Chaumet, Jakob Rehof: CLS-CAD: Synthesizing CAD Assemblies in Fusion 360. Subm. ASE 2023

AUTO-GENERATING ASSEMBLIES AND IMPROVING CREATIVITY.

USE-CASE: CAD SYNTHESIS

14

REPETITION

Products nowadays are rarely one-offs, but
usually part of a larger product line.
Members are usually similar and share many

identical modular parts.

While CAD software is ubiquitously used and is
at the core of nearly all product design, repetitive

tasks are poorly automated.

Synthesizing CAD assemblies can get rid of that
repetition and explore the design space more
thoroughly, enhancing , ,

giving , and enabling

USE-CASE: CAD SYNTHESIS 15

REPETITION

LEFT RIGHT
Put in Perspective: Put in Perspective:
* 91 Screws « 209 Screws
» 364 Clicks » 836 Clicks
Just for inserting and connecting screws. Just for inserting and connecting screws.

Auto-generated by CLS-CAD Auto-generated by CLS-CAD

USE-CASE: CAD SYNTHESIS 16

SOLUTION

FUSION 360 CLS-CAD
Latest CAD package from Autodesk: Add-In for Fusion 360:
* Free for Academia « Managing of taxonomies/subtype hierarchies
* Growing Popularity * Annotating of geometry and documents
* Actual Industry Usage (Mid-Sized Companies) * Requesting and assembling products

CLS-CAD ENRICHES CAD DOCUMENTS WITH TYPE INFORMATION, ALLOWS REQUESTING PRODUCTS, AND
AUTOMATIC ASSEMBLY OF THE SET OF SOLUTIONS.
FULLY INTEGRATED INTO FUSION 360 AS AN ADD-IN.

DEMO: WWW.YOUTUBE.COM/WATCH?V=GKOOSTSAXUK

USE-CASE: CAD SYNTHESIS

17

TAXONOMY EDITOR

The taxonomy editor allows building and managing multiple

taxonomies in an interactive fashion.

@ TYPED JONT

Select/Configure Joint = Select Required Type | Select Provided Type

Joint Type n =

Reguires Type (HexagonNCubeN40mm)

Provides Type (Hexagon)

Reset Typing o

Set Name Hexagon Sde

OK Cancel

large

ot
——
w

TYPE ANNOTATION

The annotation tools then allow typing the part with intersection
types, thus defining connection possibilities that formally encode

geometric restrictions, intent of connections, as well as material

restrictions etc.

INHABITATION REQU EST>

Assemblies are then requested based on
an intersection type, with optional type

propagation to restrict results further.

USE-CASE: CAD SYNTHESIS

17

TAXONOMY EDITOR

The taxonomy editor allows building and managing multiple large

taxonomies in an interactive fashion.

=] -
. a T Fonm
T iy
T re
j R
T rommo
I i
v i v v \ v v v v v
Py o __.--"-..__‘ ..a-"'“"‘-x .--"-,.\.‘_L _.-""""'--. I__...-'--._._‘ L _‘___.-"a..,‘ T s
Scrwi Flnl;w [Plitl Bra‘cﬁ(E{tru jon BearinJ; ElTettqr |BmJ NuL_DIJi L
~ 3 g ., 3 ~ L L ~ T
T matrasm
o
3 ' ¥ . ¥ : T
T P o e o s i T
5E+¢_.hh'tl:ll Ftnt[ary_l? te EasEﬂPI%te Eall_Bear]ing SIE'n'_Beﬂ'ing Rutary'P'ressulEGijer_ Effector T_Hut] I -
M_.--"‘ =, ~ . ~ T ~ T ? i
I .1 =
T e
T e
T S
__.-"-._‘_‘ T - an
Dynamiel R
""x.,-"f" T drmr dwrmng

Fig. 1: Windows to manage the subtype hierarchy, created by the plugin

(a) Display of subtype hierarchy for editing.

(b) Display of subtype
hierarchy for selecting.

natively in Fusion 360.

& TYPEDJOINT

Jekct/Configure Joint | Select Required Type | Select Provided Type

Select format!iormat famiby |

4 T Format
-E Extrusion
T Flat
-E Hexagonal
T Round

T st

Select part/part famiby |

« T Part

T eass
T Bearing
-E Eracket
-E Effacter
T Estrusion

4 T Motor
- -E Servo_Moior

-E Dynamixel

T Nut_DIN
T Plate

Select attributes/atiribute famihy |mm

4 T aAwrioute

4 T Length
T 10mm
T 40mm
T #4mm
T 5mm
T smm

4 T Mountngvidth

T 34mm_mountng
T 38mm_mounting
T 6smm_mounting

OK

Cancel

USE-CASE: CAD SYNTHESIS

19

XL-430 SERVOMOTOR - $

SUBOPTIMALITY

XM-430 SERVOMOTOR - $%$$

Sometimes parts get used (whether manually designed or

not) that are suboptimal.

This can have many reasons:
* Unexpected downstream changes from usage
* Legacy part, used since forever

* Overly cautious dimensioning

These can be difficult to identify, either due to:
* habitual reasons when manually designing
or
* due to the complexity of the assembly, where it
is not clear that using one part affects other

parts of the assembly negatively.

USE-CASE: CAD SYNTHESIS

GETTING RID OF
SUBOPTIMAL PARTS

Only basic experimental validation completed thus far

We can view the set of all present in the repository as an . The learned

model then gives insight into which parts should be avoided.

The HyperMapper iteratively keeps improving the model and the pareto front. This allows us to find

HYPERMAPPER

(products) that are . Designers

thus need to manually evaluate only the assemblies that are part of this pareto front.

The learned can be utilized to the . The lowest scoring entries in
the input parameter vector can be vetted, allowing or difficult to source
to be /avoided, leading to better products down the line, Assembly Metrics:
 Complexity
* Cost

* Part Availability

WWW.GITHUB.COM/TUDO-SEAL/CLS-CPS

SEAL — Software Engineering by Algorithms and Logic

21

WWW.GITHUB.COM/TUDO-SEAL

SUMMARY

(CL)S framework: Formally verified and

language-agnostic synthesis of artefacts.

Synthesis and learning can be used to pareto-
optimally solve motion planning problems and

optimize planning parameters.

Synthesis and learning can be used to auto-
generate CAD assemblies, reducing redundancy
in product line engineering, and identify

suboptimal parts.

Extensions to CLS-framework

— Input Goal Type

Combinatory
Meta-Programs

Inhabitati lgorithm for CL m
nnapitation algori or BT I — Output Programs
/<\ K
L ISK (US)K) O /f setup cards
for (int 1= @; 1 <8; +) {
/>\ Field tunsrefix + (i+1));
2 I{(SK) (1(SK)) § addn~
fie /
fie for (int 1= @; 1 < 8; i++) {
1 add fieldColums[i] = new Colum(Cotummsprafix + (i+1));
5 addNodelElement (FieldColumns[1]);
. " fieldColumviews[i] = new Columview(fieldColums[1]);
3 SKISKT ((sKmsIK |5 x fie fieldColumnviews[i].setBounds(45+15%i+i*cu, 42 + ch, cw, 13%ch);
fle sddviewdidget (FieldColumnviews[1]);
fie
> > /<</t’ >} /f register controllers
& N FieldColummvieus[1]. sethouseHotionadapter (new SolitsireMousenotionadapter (this));
for (in fieldColumvieus[1].setlUndosdapter (new SolitairelndoAdapter (this));
4 S(KT)(SK)T (S(KyEK)) |8 & fie fieldColumnviews[i].set pter (new ColumController (this, fieldColumnviews[1]});
add T
d fie o . .
X fie for (int 1= 0; 1 < 4; i+) {
i add ficldHomeriles[i] = new Pile (Homepitesprefix + (1+1));
s addHodelElement (FieldHomeriles[1]);
5. S{K(I(S(KT)})) (S{K(I(S(KT))))} K o1 7 ficldHomePileviews[i] = new Pileview(ficldHomePiles[i]1;
fle ficldHomerileviews[i].setBounds(125+15%i4(1+4)%cu, 20, cu, ch);
R fie addviewdidget (fieldHomerileviews[1]);
In the forms with minimal parentheses, not every subsequence of fie
symbols is well formed (ie., has balanced implicit parentheses). Tn " 4/ register controllers
1, notice that 8K is not a balanced subterm, and does not correspond fieldHomePileviews[1].setMouseMotionAdapter (new SolitaireMouseMotionAdapter (this));
t0 a subtree in the tree diagram. If 3 arose in a derivation, we could fieldHomePileviews[i].setUndoAdapter [new SolitairelndoAdapter (this));
not apply Rule 2 to the form KIS, because that is not a well-formed ficldHomerilaviews[1]. sethouscAdapter (new HomepilePilecontroller [this, ficldHomerileviews[1]))
portion, nor could we apply Rule 1 to the form IS. Similarly in 4, T
(KI)(SK) and (SK)1 are not well formed

Tree grammar of all
solutions

-~ TN
N A

component
repository

MID
Examples: POST
N~ __~ - Transformations on Examples: tests, filters,

grammar measurements, ...

PRE . .
- Enumeration strategies

Examples:
- Generation of components
- (Numerical) configuration of components

SEAL — Software Engineering by Algorithms and Logic

21

ONGOING WORK

Extension of type specifications with boolean connectives (TYPES 2023)

Using rewriting and algebraic transformations on three grammar (FSCD 2022)

Further work on CAD-integration (subm. ASE 2023)

Systematic integration of numerical configuration spaces

Enumeration strategies for controlled experiments and reinforcement learning

Automatic configuration of algorithms (algorithmic families)

Synthesis of NN-architectures, hyperparameter tuning, applications in AutoML ...

WWW.GITHUB.COM/TUDO-SEAL

	Διαφάνεια 1
	Διαφάνεια 2
	Διαφάνεια 3
	Διαφάνεια 4
	Διαφάνεια 5
	Διαφάνεια 6
	Διαφάνεια 7
	Διαφάνεια 8
	Διαφάνεια 9
	Διαφάνεια 10
	Διαφάνεια 11
	Διαφάνεια 12
	Διαφάνεια 13
	Διαφάνεια 14
	Διαφάνεια 15
	Διαφάνεια 16
	Διαφάνεια 17
	Διαφάνεια 18
	Διαφάνεια 19
	Διαφάνεια 20
	Διαφάνεια 21
	Διαφάνεια 22
	Διαφάνεια 23
	Διαφάνεια 24
	Διαφάνεια 25
	Διαφάνεια 26
	Διαφάνεια 27
	Διαφάνεια 28
	Διαφάνεια 29

