
GENERATING SIMULATION MODELS FROM COMPONENTS:

Industrial use cases in design space exploration and machine learning

Jakob Rehof, TU Dortmund University

SEAL – Software Engineering by Algorithms and Logic

W W W . G I T H U B . C O M / T U D O - S E A L SummerSoc 2023

02SEAL – Software Engineering by Algorithms and Logic

CONSTANTIN
CHAUMET

W W W . G I T H U B . C O M / T U D O - S E A L

Researcher at SEAL Research Group

Focus on Robotics and Design Automation

Developer of CLS-CAD

Maker of Slides

01

Intent of- and Information about the

(CL)S framework

(CL)S FRAMEWORK

02

Application of the (CL)S framework and

the HyperMapper to explore the motion

planning design space.

USE-CASE: MOTION PLANNING

03

Application of the (CL)S framework to

synthesize complete CAD assemblies and

in future optimize key metrics.

USE-CASE: CAD SYNTHESIS

04

Short summary of presented contents.

WRAP-UP

A short overview of presented topics.

03SEAL – Software Engineering by Algorithms and Logic

AGENDA.

04(CL)S Framework

COMBINATORY
LOGIC
SYNTHESIZER
THE (CL)S FRAMEWORK IS A LANGUAGE-AGNOSTIC AND FORMALLY

VERIFIED FRAMEWORK THAT IS ABLE TO GENERATE ALL

COMBINATIONS OF MODULAR COMPONENTS THAT SATISFY A

PARTICULAR REQUEST/SPECIFICATION.

W
W

W
.G

IT
H

U
B

.C
O

M
/

T
U

D
O

-S
E

A
L

/
B

C
L

S
-P

Y
T

H
O

N

01

A set of combinators with types. The

types define how the combinators can be

applied to each other and thus combined.

REPOSITORY

02

The grammar that describes all terms that

are inhabitants of the requested type.

TREE GRAMMAR

03

An enumeration of the terms present in

the grammar. Multiple different

approaches are possible.

TERMS

04

The interpretation of the terms resolves

the applications etc. to concrete artifacts.

ARTIFACT

05(CL)S Framework

HOW IT WORKS.

INHABITATION REQUEST ENUMERATION INTERPRETATION

component

repository

Inhabitation algorithm for CL

Combinatory
Meta-Programs

Output Programs

Tree grammar of all
solutions

Input Goal Type

Basic synthesis pipeline of CLS-framework

component

repository

Generate

Inhabitation problem in CL

goal type
sample-based

motion plans

Hypermapper

Result vectorConfiguration
vector

Learn

Executable programs

Execute, test, measure

Design space exploration and learning with CLS-framework

06USE-CASE: MOTION PLANNING

MOTION
PLANNING

W
W

W
.G

IT
H

U
B

.C
O

M
/

T
U

D
O

-S
E

A
L

/
B

C
L

S
-P

Y
T

H
O

N

TACKLING A FUNDAMENTAL PROBLEM OF ROBOTICS WITH (CL)S:

FINDING A COMPROMISE BETWEEN PERFORMANCE METRICS.

Schäfer, Bessai, Chaumet, Rehof, Riest: Design Space Exploration for Sampling-based Motion Planning Programs with Combinatory Logic Synthesis, WAFR 2022

APPROACH.

Motion Planning Program Design Space:

• Planner

• Sampler

• Motion Validator

• Maximum Planning Time

07USE-CASE: MOTION PLANNING

PRODUCES GENERATORS FOR PYTHON PLANNING PROGRAMS,

WHICH IN TURN PRODUCE RESULT VECTORS IN ℝ𝑛.

THESE RESULTS GET EXTRACTED, COMPARED, AND BECOME PART OF THE HYPERMAPPER LEARNING LOOP.

08USE-CASE: MOTION PLANNING

HYPER
MAPPER

Black-Box Optimizer using Bayesian Optimization

Often a design space will not have a clearly defined notion of a derivative, making the pareto front

impossible to determine analytically.

The HyperMapper can solve multi-objective optimization problems in such cases, requiring only a set

of input parameters and an evaluation function (multi-objective).

The input parameters are then optimized to minimize the evaluation functions objectives.

An initial pareto front of the objectives is found in the warm-up phase.

The following active learning phase learn a model that approximates the true MOP function,

iteratively improving model and pareto front.

Input Parameters

Evaluation Function

HYPERMAPPER

W W W . D O I . O R G / 1 0 . 1 1 0 9 /

M A S C O T S . 2 0 1 9 . 0 0 0 5 3

W
W

W
.G

IT
H

U
B

.C
O

M
/

L
U

IN
A

R
D

I/
H

Y
P

E
R

M
A

P
P

E
R

Nardi, L., Koeplinger, D., Olukotun, K.: Practical design space exploration. In: MASCOTS, pp. 347–358. IEEE Computer Society (2019).

08USE-CASE: MOTION PLANNING

HYPER
MAPPER

Black-Box Optimizer using Bayesian Optimization

Randomized decision forests

Regression random forests

Injection of prior knowledge (distributions)

Sampling with categorical and discrete parameters

Constrained Bayesian optimization

W W W . D O I . O R G / 1 0 . 1 1 0 9 /

M A S C O T S . 2 0 1 9 . 0 0 0 5 3

W
W

W
.G

IT
H

U
B

.C
O

M
/

L
U

IN
A

R
D

I/
H

Y
P

E
R

M
A

P
P

E
R

Nardi, L., Koeplinger, D., Olukotun, K.: Practical design space exploration. In: MASCOTS, pp. 347–358. IEEE Computer Society (2019).

01.07.202312

Feature space exploration for sample-based motion planning

09USE-CASE: MOTION PLANNING

VALIDATION

Sy
nt

he
si

ze
d

ro
bo

ti
c

ar
m

w
it

h
at

ta
ch

ed
si

m
pl

e
gr

ip
pe

r.

To validate the approach, we combined the approach with

different ongoing research.

ROBOTIC ARM AUTOGENERATION

The (CL)S framework is also able to generate fully functioning robotic arms.

We utilised these to validate the approach on a

• Multitude of planning situations,

• With different robotic arms.

This allowed us to compare the performance of different planner setups for different scenarios,

obtaining sets of pareto-optimal planning configurations.

11USE-CASE: MOTION PLANNING

PARETO FRONTS

Pareto fronts for computation time and path length

(shorter is better).

Scene with path simplification Scene without path simplification

Shortest path easily missed by humans:

• Long computation time

• Unusual combination

LEFT

Lack of path simplification greatly

favours RRT Connect with Uniform

Sampling.

If human designer doesn’t test specifically

that combination, results are very sub-

optimal.

RIGHT

MODEL
TRANSFER

12USE-CASE: MOTION PLANNING
W W W . D O I . O R G / 1 0 . 1 0 0 7 /

9 7 8 - 3 - 0 3 1 - 2 1 0 9 0 - 7 _ 3

We investigated if the learned models of what makes a good planner can be

transferred to other models.

The plots shown are from path finding problems, e.g. a robot navigating

through an environment.

The model transferred from the problem “Abstract” performed acceptably

well for most of the other problem instances.

The models learned on robotic arms were not transferrable, due to them being

specific to the robot and the robots being inherently very different.

13USE-CASE: CAD SYNTHESIS

SYNTHESIS OF
CAD ASSEMBLIES

W
W

W
.G

IT
H

U
B

.C
O

M
/

T
U

D
O

-S
E

A
L

/
C

L
S

-C
A

D

RELIEVING CAD SOFTWARE ENGINEERS FROM REPEATING THE

SAME BASIC TASKS OVER AND OVER;

AUTO-GENERATING ASSEMBLIES AND IMPROVING CREATIVITY.

Constantin Chaumet, Jakob Rehof: CLS-CAD: Synthesizing CAD Assemblies in Fusion 360. Subm. ASE 2023

14USE-CASE: CAD SYNTHESIS

REPETITION

Products nowadays are rarely one-offs, but

usually part of a larger product line.

Members are usually similar and share many

identical modular parts.

While CAD software is ubiquitously used and is

at the core of nearly all product design, repetitive

tasks are poorly automated.

Synthesizing CAD assemblies can get rid of that

repetition and explore the design space more

thoroughly, enhancing creativity, efficiency,

giving formal guarantees, and enabling data-

driven methods.

15USE-CASE: CAD SYNTHESIS

REPETITION

Auto-generated by CLS-CAD

Put in Perspective:

• 91 Screws

• 364 Clicks

Just for inserting and connecting screws.

LEFT

Put in Perspective:

• 209 Screws

• 836 Clicks

Just for inserting and connecting screws.

RIGHT

Auto-generated by CLS-CAD

SOLUTION

16USE-CASE: CAD SYNTHESIS

CLS-CAD ENRICHES CAD DOCUMENTS WITH TYPE INFORMATION, ALLOWS REQUESTING PRODUCTS, AND

AUTOMATIC ASSEMBLY OF THE SET OF SOLUTIONS.

FULLY INTEGRATED INTO FUSION 360 AS AN ADD-IN.

Latest CAD package from Autodesk:

• Free for Academia

• Growing Popularity

• Actual Industry Usage (Mid-Sized Companies)

FUSION 360

Add-In for Fusion 360:

• Managing of taxonomies/subtype hierarchies

• Annotating of geometry and documents

• Requesting and assembling products

CLS-CAD

D E M O : W W W . Y O U T U B E . C O M / W A T C H ? V = G K 0 0 S T S A X U K

17USE-CASE: CAD SYNTHESIS

The taxonomy editor allows building and managing multiple large

taxonomies in an interactive fashion.

The annotation tools then allow typing the part with intersection

types, thus defining connection possibilities that formally encode

geometric restrictions, intent of connections, as well as material

restrictions etc.

TAXONOMY EDITOR

TYPE ANNOTATION

INHABITATION REQUEST

Assemblies are then requested based on

an intersection type, with optional type

propagation to restrict results further.

17USE-CASE: CAD SYNTHESIS

The taxonomy editor allows building and managing multiple large

taxonomies in an interactive fashion.

TAXONOMY EDITOR

19USE-CASE: CAD SYNTHESIS

SUBOPTIMALITY

Sometimes parts get used (whether manually designed or

not) that are suboptimal.

This can have many reasons:

• Unexpected downstream changes from usage

• Legacy part, used since forever

• Overly cautious dimensioning

These can be difficult to identify, either due to:

• habitual reasons when manually designing

or

• due to the complexity of the assembly, where it

is not clear that using one part affects other

parts of the assembly negatively.

XL-430 SERVOMOTOR - $ XM-430 SERVOMOTOR - $$$

20USE-CASE: CAD SYNTHESIS

GETTING RID OF
SUBOPTIMAL PARTS

We can view the set of all parts present in the repository as an input parameter vector. The learned

model then gives insight into which parts should be avoided.

The HyperMapper iteratively keeps improving the model and the pareto front. This allows us to find

CAD assemblies (products) that are pareto optimal w.r.t. the defined assembly metrics. Designers

thus need to manually evaluate only the assemblies that are part of this pareto front.

The learned model can be utilized to improve the repository of parts. The lowest scoring entries in

the input parameter vector can be vetted, allowing badly designed, inefficient or difficult to source

parts to be identified and removed/avoided, leading to better products down the line,

Repository of Parts

Assembly Metrics:
• Complexity
• Cost
• Part Availability

HYPERMAPPER

W
W

W
.G

IT
H

U
B

.C
O

M
/

T
U

D
O

-S
E

A
L

/
C

L
S

-C
P

S

Only basic experimental validation completed thus far

21SEAL – Software Engineering by Algorithms and Logic

W W W . G I T H U B . C O M / T U D O - S E A L

(CL)S framework: Formally verified and

language-agnostic synthesis of artefacts.

Synthesis and learning can be used to pareto-

optimally solve motion planning problems and

optimize planning parameters.

Synthesis and learning can be used to auto-

generate CAD assemblies, reducing redundancy

in product line engineering, and identify

suboptimal parts.

SUMMARY

component

repository

Inhabitation algorithm for CL

Combinatory
Meta-Programs

Output Programs

Tree grammar of all
solutions

PRE
Examples:
- Generation of components
- (Numerical) configuration of components

MID
Examples:
- Transformations on

grammar
- Enumeration strategies

POST
Examples: tests, filters,
measurements, …

Input Goal Type

Extensions to CLS-framework

21SEAL – Software Engineering by Algorithms and Logic

W W W . G I T H U B . C O M / T U D O - S E A L

ONGOING WORK

• Extension of type specifications with boolean connectives (TYPES 2023)

• Using rewriting and algebraic transformations on three grammar (FSCD 2022)

• Further work on CAD-integration (subm. ASE 2023)

• Systematic integration of numerical configuration spaces

• Enumeration strategies for controlled experiments and reinforcement learning

• Automatic configuration of algorithms (algorithmic families)

• Synthesis of NN-architectures, hyperparameter tuning, applications in AutoML …

	Διαφάνεια 1
	Διαφάνεια 2
	Διαφάνεια 3
	Διαφάνεια 4
	Διαφάνεια 5
	Διαφάνεια 6
	Διαφάνεια 7
	Διαφάνεια 8
	Διαφάνεια 9
	Διαφάνεια 10
	Διαφάνεια 11
	Διαφάνεια 12
	Διαφάνεια 13
	Διαφάνεια 14
	Διαφάνεια 15
	Διαφάνεια 16
	Διαφάνεια 17
	Διαφάνεια 18
	Διαφάνεια 19
	Διαφάνεια 20
	Διαφάνεια 21
	Διαφάνεια 22
	Διαφάνεια 23
	Διαφάνεια 24
	Διαφάνεια 25
	Διαφάνεια 26
	Διαφάνεια 27
	Διαφάνεια 28
	Διαφάνεια 29

