Next generation modeling
in the era of
cyber-physical systems

SummerSoc Friday, June 30, 2023

Peter Fettke Wolfgang Reisig

German Research Center H“mbOIdt'U”{Vﬁ’fSltOt
for Artificial Intelligence zu Berlin
(DFKI) and Saarland Germany
University, Saarbriicken,
Germany

Institut far Informatik
Humboldt-Universitat zu Berlin

<

UNIVERSITAT
“HEWHW DES
L SAARLANDES

1

First generation modeling anno 1993: Hasso Plattner and Klaus Besier
pose with the SAP ERP Reference Model

SPECIAL REPORT: Preparing The Way For Pentium page 36

A CAHNERS PUBLICATION

e DATAMATION

FOR CORPORATE COMPUTING PROFESSIONALS WORLDWIDE

Dr. Hasso Plattner (1.), 5‘ 35 o N MARCH 15,1993

vice chairman and founder, SAPAG, [- 1
with Klaus Besier, :

- ' f* SAP's
WClient/Server
Battle Plan

page 26

Xbase: Standard Or
Stopgap? page 47
Shotgun Marriage
For Battling Networks
page 52

New Tools Ease The
Move To AS/400s
page 59
& Your Next LAN

~ Storage Could Be A
| Mainframe page 71

A Capacity Planning
Primer page 77

What is needed today? According to Gartner operations in the digital world (“DigitalOps”) combine three domains

DigitalOps Combines Three Domains

Process Modeling Process Monitoring
Planning and Knowing What Happened
Understanding Work + Business Operations

* Process and Decision Monitoring
« Data and Events » Business Performance
« Goals and Motivations Monitoring Dashboards

Modeling

4
-

« Machine Learning « Analytics, BAM and Bl

« KPIs and KRIs

Process/Task Execution
Supporting and Driving Work

» Orchestration and Coordination d: di ital WOV\d
mend: : f the aig
» Process and Decision Execution e redco?l;‘ort in understanding models © _nd better
. nae sive,
Event Management Spe sive, more comprehen
« Algorithms and Bots more expres , ‘
« Integration Interfaces theoretically founded!

Source: Gartner (November 2021)
DTO = digital twin of an organization

Note: Organizations are moving to combine these domains, rather than dealing with them separately.

THE MODEL

THE WORLD
Part | examples Part Il A glimpse at concepts:
* 1. architecture The three HERAKLIT pillars
e 2.single behavior 5. architecture: Two-faced modules
* 3. elementary systems 6. dynamics: steps: from requirements to
models

* 4. items and data
7. statics: Breathing live into logic: structures

and signatures

Part Ill A big case study: an apetizer

Part | Examples refour aciite:
Wolfgang 1 . ArC h ite Ct U re

* A big system consists of modules. * An interface consists of gates.
A module has an interface. * Each gate is labeled.
ready to bake bake on counter on counter supply fo aide ready to bake

‘ee 6/27
y %

To compose two modules, merge equally labeled gates:

on counter _
ready to bake bake T T ready to bake

U
aide free / o'ebl/s

bake ¢ supply to aide

ready to bake bake

on counter

Pa rt I Examples The four activities
1. Architecture

of a bakery

onh counter

e ready to bake Uy

2

.) \
%‘/ W y
Q

To compose two modules, merge equally labeled gates:

ready to bake bake

on counter

aide free

supply to aide

ready to bake

/

6/’01
)
Ys

Part | Examples refour aciite:
1. Architecture

bake ¢ supply to aide ® move to shop

ready to bake on counter on counter
y bake TR ready to bake

V T, °

To compose two modules, merge equally labeled gates:

on counter _
ready to bake bake e e ready to bake

L
aide free / % s e
»
on shelf

shelf empty

move to shop

Pa rt I Exa m p | @S The four activities

of a bakery
e
1. Architecture
bake ¢ supply to aide ® move to shop
ready to bake bake on counter on counter supply fo aide ready to bake o .
L < ‘ée“e
y Us
shelf empty] move to shop |on shelf on shelf sell shelf empt
To compose two modules, merge equally labeled gates:
ready to bake e on counter supply to aide ready to bake

L
aide free / % s e

shelf empty on shelf

move to shop

Part | Examples

1. Architecture

bake ¢ supply to aide ® move to shop e sell

The four activities
of a bakery

dy to bak on counter on counter
ready to bake bake supply to aide ready to bake Uy °
o N % &\‘e
\$ % 4 N
5 Ty -
shelf empty] move to shop |.on shelf on shelf
To compose two modules, merge equally labeled gates:
ready on counter _ ready to bake
ady to hake bake - supply to aide Y
o

aide free / /o'eb(,s . aide free
shelf empty /onshelf shelf empty

move to shop

sell

sell

shelf empt

Part | Examples

The four activities

of a bakery
e
1. Architecture
bake ¢ supply to aide ¢ move to shop e sell
bakery
bake ¢ supply to aide
on counter ready to bake
ready to bake bake i A y
aide free / % move to shop - sell aide free
v
N helf
shelf empty move to shop - shelf empty
ready on counter _ ready to bake
ady to bake bake supply to aide A
aide free / Yy aide free
shelf empty /nshelf shelf empty

move to shop

sell

ready to bake

ready to bake

Part | Examp|e5 The three staff

aide free

shelf empty

of a bakery
1. Architecture
ready to bake supply to aide aide free move to shop
baker aide vendor
supply to aide aide free move to shop shelf empty shelf empty
Latef _
the four activities
ready to bake hree Staff
baker af\d ihe t ha\l\or
supply he Same be
toaide [. aide free abstract !
move
to shop vendor
shelf empty

Peter

Part | Examples
2 behavior

ready to bake on counter on counter .
! bake [m—— " cupply toaide [1220Y o bake Y «
\ S
Remember the modules
ready to bake on counter ready to bake
bake supply to aid
L :
aide free / %b(,s aide free
shelf empty 4& shelf empty

move to shop

sell

sell

shelf empt

ready to bake on counter on counter .
y bake R ready to bake i "
& %y %s, &
y eb‘/s °
L\
shelf empty| move to shop |on shelf on shelf| sell shelf empt
bake supply to aide move to shop sell
ready sell
bake @ supply aide @
to aide busy

Composed steps

Four steps
describe behavior e

ready | ‘ »| supply
/ aide
busy

move to
shop

bakery_run e bake

bakery-run:

bake ¢ supply to aide
e move to shop e sell

- move to I
shop se

ready to bake on counter on counter .
Y bake supply to aide ready to bake Vit B «®
% % Yy S
y ¥ o
(N &
shelf empty| move to shop |on shelf on shelf| sell shelf empt
bake supply to aide move to shop sell
ready
bake @ supply . . @ sell %
to aide

Composed steps

move to
shop

Four steps
describe behavior e

ready ‘ | supply

bakery-run:

bake ¢ supply to aide
e move to shop e sell

bakery_run e bake

to bake

extension

bakery-run ¢ bake

No more

move to
shop

totally ordered!

ready to bake

ready
to bake

move to shop

on shelf

QS

on counter on counter
bake — — supply to aide ready to bake e/b'e b
S %, Ny
A s
shelf empt
bake supply to aide

bake @ supply aide
to aide busy

Four steps
describe behavior e

move to
shop

on shelf
—_— sell

shelf empt

sell

sell

©

Composed steps

bakery-run e bakery-

run

ready
to bake

Q

bake

VI
3 5
D @

shelf

¢

supply ready
to aide to bake

/ aide
busy
>

empty

‘ supply
bake @ to aide
aide
free
move to I
shop se

move to
shop

sell

Example: modules of staft

ready to bake ready to bake supply to aide aide free
baker aide
supply to aide aide free move to shop
ready to bake ready to bake
baker
supply
to aide aide aide free
aide free move
to shop vendor
shelf empty shelf empty
baker

ready
to bake bake @

ready
to bake

supply
to aide

move to shop

shelf empty

vendor

Operational behavior:

supply
to aide

aide
free

aide

aide
busy

aide
free

move to
shop

shelf empty

Remember the modules

move to
shop

shelf
empty

vendor

sell

shelf
empty

Example: modules of staft

ready | ‘ »| supply

bakery_run e bake

Remember

bake e supply to aide
move to shop e sell

aide
busy

baker e aide ® vendor

vendor

shelf
sell
empty

baker aide

ready supply aide move to
to bake to aide free shop

aide

busy

- move to I
shop se

ready
to bake

bake

supply
to aide

aide
free

move to
shop

shelf
empty

Example: modules of staft

bake

supply
to aide

bakery run bake

aide
bus

>

move td
shop

sell

ready
to bake

baker

bake

ready
to bake

supply
to aide

supply
to aide

aide
free

aide

aide
busy

aide
free

move to
shop

Remember

bake e supply to aide
move to shop e sell

move to
shop

shelf
empty

shelf
empty

Concurrency is not transitive!

bake

supply
to aide

ready
to bake

_ | move to
shop

supply

(2)_bakery_run

to aide

move to
shop

each node in @ is concurrent to each node in

Part | Examples
3. Elementary systems

Wolfgang

Part | Examples
3. Elementary systems

ready
to bake

bake

supply
to aide

X

aide
(=)

shelf

ready
to bake
aide
busy

bake

supply
to aide

move to

empty

shop

sell

move to
shop

sell

Part | Examples
3. Elementary systems

bake

supply
to aide

¢

ready
bake

aide
busy

supply
to aide

move to

shop

sell

move to
shop

sell

on baker system

supply

Part | Examples
3. Elementary systems

aide

aide system

usy

supfly / m
to aifle aide
free

ovq to

on

vendor system

tolaide shiop
ready bake supply ready bake supply
to bake to aide to bake to aide
aide / aide aide
fr_ey busy free /
shelf ,| move to sell move to
empty shop shop sell

baker system

Part | Examples
3. Elementary systems

aide system

aide

usy

supgly
to aigle

/ movd to
aide sffop
free

on vendor system

' /nove to
e
aide shop
free

empty

sell

baker system

supply
tolaide

ready
to bake

baker system e aide system 1 o
vendor system e vendor system 1

versus

baker system e aide system 1 o
vendor system 1 e vendor system

Part | Examples

Elementary systems

aide sys

aide system1

supply
to aide

on vendor system

shelf
empty

aide free

eto

shop‘

ove to
shop

move to

on vendor system 1

empty1

shop

baker system

supply
tolaide

ready
to bake

baker system e aide system 1 o
vendor system e vendor system 1

versus

baker system e aide system 1 o
vendor system 1 e vendor system

Part | Examples

Elementary systems

aide sys

aide system1

supply
to aide

on vendor system

shelf
empty

aide free

eto

shop‘

ove to
shop

move to

on vendor system 1

empty1

shop

Part | Examples
3. Elementary systems

on baker system eip erity. on vendor system

eto
shop
syppl
bake S lor supply
Olaldeto aide "
aide free empty

bakery system e aide for 2 system « shop system 1 « shop system 2 move to

on
/She@\ Shop

on vendor system 1
on ove t w
counter, shop shel
balde empty
usy
A supply on
bake ready to aide shelf1 n
to bake aide free | @ move 1o
shop
mo
sho:; A sellt empty1
shelf
empty1

4. items and data

on
counter
aide with
pastry
supply to
bake(y) @ aidpe?x); :
recent supply aide free

function

next: descriptions — pastries
next("bread") = cake
next("cake") = pie

next("pie") = bread

domains
pastries = {bread, cake, pie}
descriptions = {,bread", ,,cake®, ,pie“}

constants predicates
»pie“: descriptions on counter, aide with pastry, on shelf: pastries

recent supply: descriptions,

bakery with three pastries

function

des: pastries — descriptions
des(bread) = "bread"
des(cake) = "cake"

des(pie) = "pie"

propositions
aide free, shelf empty

variables
X: pastries
y: descriptions

4. items and data

on
counter

aide with
astry

Y
L.Q_X,
supply to / move to
aide(x) shop (x)

bakery with pastries

on shelf

bake(y) @ sell (x)
recent supply .
aide free shelf empty
bakery with three pastries

domains function _ function
pastries = {bread, cake, pie} next: descriptions — pastries des: pastries — descriptions
descriptions = {,,bread*, ,.cake®, ,,pie“} next("bread”) = cake des(bread) = "bread"

next("cake”) = pie des(cake) = "cake"

next("pie") = bread des(pie) = "pie"
constants predicates propositions
»pie“: descriptions on counter, aide with pastry, on shelf: pastries ajde free, shelf empty

recent supply: descriptions,

variables
X: pastries
y: descriptions

Pause

Part Il a glimpse at concepts

Wolfgang

THE MODEL

Part Il A glimpse at concepts:
The three HERAKLIT pillars

THE WORLD 5. architecture: Two-faced modules
6. dynamics: steps: from requirements to models

7. statics: Breathing live into logic: structures,
signatures and schamata

Part Ill A big case study: an apetizer

5. Architecture: two faced modules

Theoretical informatics HERAKLIT
Given an alphabet A {a, B, v}. Given an alphabet A {a, B, v}.
Canonical constructs: Canonical constructs:
e wordover A By pBaa * Modules with gate labels in A
* Set of all words over A, written A* » Set of all modules over A, written AM
* Composition of words: a ¢ Bay ¢ Byy e Composition of modules M ¢ N
= afppayByy
Monoid (A*, e, €): Monoid (AM, e, €):

THE formal fundament of computing. THE formal fundament of modeling.

5. Architecture: o o o

two faced \ o

modules oéo

A module is

- agraph

5. Architecture:
two faced
modules

A module is

- agraph

- With two distinguished sets of nodes
(left and right interface) , gates”

Mo

S.Architecture: o g @

two faced © o
modules \o/ "&

A module is

- a graph,

- With two distinguished sets of nodes
(left and right interface) ”gates”.

- Each gate is labeled.

5. Architecture:
two faced
modules

A module is

- a graph,

- With two distinguished sets of nodes
(left and right interface) “gates”.

- Each gate is labeled.

Here a second module, N,.

d

© o o
a

Mo

\ >°&;

i o

S

/

No

Mo No

5. Architecture: & _ & @ o °

two faced & Nt
modules \o/ "& N

S

A module is

- a graph,

- With two distinguished sets of nodes Mo ¢ No

(left and right interface) “gates”. © —@QP— @ —

- Each gate is labeled. g \ \®
e \

Here a second module, N,. <«

Composition of My and N, %n 0
B

. Mo No
S.Architecture: o o ¢ & o
two faced & \ oo
modules o e
- Any two modules can be composed, a@ B

resulting in a module.

- Compsosition is associative: E Mo ¢ No

Le(MeN) = (LeM)eN © - © O

- For the empty module € holds: g \

Mee=geM=M /®

- A gate may lie in the left as well as o \

in the right interface \" a@
Mﬁ

6. dynamics: steps: from | v,
requirements to models <

Peter

6. dynamics: steps: from
requirements to models

Peter

In the case of the fan off, when you turn on
the light, after some time, the fan will start
running. In this situation, if you turn off the
light, the fan continues running for some
time. Hence, in the case of the fan off,
when you turn on and off the light quickly,
the fan will not start running at all. And in
the case of the fan on, when you turn off
and on the light quickly, the fan will
continuously run.

6. dynamics: steps: from
requirements to models

In the case of the fan off,,when youturn on
the light, after some time, the fan will start
running. In this situation, if you turn off the
light, the fan continues running for some
time. Hence, in the case of the fan off,
when youlturn on and off the light quickly,
the fan will not start running at all. And in
the case of the fan on, when you turn off
and on the light quickly, the fan will
continuously run.

6. dynamics: steps: from
requirements to models

In the case of the fan off,,when youturn on
the light, after some time, the fan will start
running. In this situation, if you turn off the
light, the fan continues running for some
time. Hence, in the case of the fan off,
when youlturn on and off the light quickly,
the fan will not start running at all. And in
the case of the fan on, when you turn off
and on the light quickly, the fan will
continuously run.

turn
light on

turn light on
m
N\ on)
N

ight is
on

fan is
off

fan starts

fan
starts

turn light off

turn
light off

Bl

fan

stops

fan stops

&8

6. dynamics: steps: from | :
Y P ~— i

requirements to models <

turn light on turn light off

light is turn light is light is turn light is
off light on on on light off off
an starts an stops

Q_

6.

ynamics: Example: bathroom fan | 1 :
turn light on turn light off '

~ah
w
turn Ilght is turn
light on on light off
fan starts fan stops
fan fan E
E starts stops E
light
is off ™ fan stops
turn turn fan is _
light light on fon 1o
out on
light —
— fan starts

is on

/. Breathing live into logic
Varying propositions

Wolfgang

The notion of proposition

Aristotle: Petri:
Always true sometimes true
e = mc? A bread lies on the shelve

This is not temporal logic!
TL: a proposition abstracts a global state
Petri: a proposition IS a (locally confined) state

/. Breathing live into logic
example

/. Breathing live into logic
Two propositions

aide with cake

/. Breathing live into logic
three propositions

aide with cake

move
9o : e
g y move pie to shop
{0 aid to shop
0 aide >
upply e move
E:I::t;y ke aide with pie bread
toaide to aide to shop

aide free

/. Breathing live into logic
Predicates and parameterized events

Aide with pastry 29 w bread

aide with pastry.cake

ove to
: aide with pastry
supply to move to (cake)
aide(pie) shop (pie) X X
»
ove to supply to move to
supply to Hply to i] : .
aidpep(gread) o (za : aide with pastry. pie shop aide(x) shopx)
supply to move to (°r¢ad) aide free
aide(x) shop(x) domain

aide free

pastry = {pie, cake, bread}

Variable x: pastry

/. Breathing live into logid
Predicates and parameterized g

Aide with pastry aide w -bread

aide with pastry.cake

supp|y to move to
aide(pie) @ shop (Ple)

supply to tHaply to aide with pastry. pie

aide (bread) aide (caks
aide free

supply to
aide(x)

ove to
(cake)
ove to supply to / move to
shop aide(x) shop(x)
move to (bread) aide free
shop(x) domain

pastry = {pie, cake, bread,
pizza, nudles, fish head}
Variable x: pastry

52

/. Structures, sighatures, and schemata

bakery with pastries

on shelf

Remember ...
Three pastries

aide with
pastry

X () X
supply to / move to
aide(x) shop (x)

aide free shelf empty

recent supply

bakery with three pastries

domains function _ function
pastries = {bread, cake, pie} next: descriptions — pastries des: pastries — descriptions
descriptions = {,,bread*, ,,cake”, ,,pie“} next("bread") = cake des(bread) = "bread"

next("cake") = pie

des(cake) = "cake"
next("pie") = bread

des(pie) = "pie"
constants predicates propositions
»pie“: descriptions on counter, aide with pastry, on shelf: pastries ajde free, shelf empty

recent supply: descriptions,

/. Structures, sighatures, and schemata

bakery with pastries

on shelf

Now:
Five pastries

aide with
astry

p
X () X
supply to / move to
aide(x) shop (x)

recent supply

aide free shelf empty
five pastries
domains function function
pastries = {bread, cake, pie, rol, biscuit} des: pastries — descriptions next: descriptions — pastries
descriptions = {,,bread", ,,cake”, ,pie“, ,rol“, ,biscuit“} des(bread)="bread" next("bread") = cake
des(cake) = "cake" next("cake") = pie
des(pie = "pie" next("pie") = rol
des(rol) = "rol" next("rol") = biscuit
des(biscuit) = "biscuit" next("biscuit") = bread
constants predicates propositions
»bread“: descriptions on counter, aide with pastry, on shelf: pastries aide free, shelf empty
recent supply: descriptions

/. Structures, sighatures, and schemata

bakery with pastries

on shelf

Schema:
Any set of pastries

aide with
pastry
L»Q_>
)

X
t / move to
shop (x)

aide free shelf empty

bake(y) Q
recent supply

signature bakery
domains function function
pastries next: descriptions — pastries des: pastries — descriptions
descriptions
constants predicates propositions
p: descriptions on counter, aide with pastry, on shelf: pastries aide free, shelf empty
recent supply: descriptions

Part Il A big case study: an apetizer

abstract view

the busines = customers * [retailer] * [supplier] * [freight forwarder]

Internet shopping

Part Ill A big case study: an apetizer
abstract view

orderung
customers

accepted
overall
delivery

-

Internet shopping

ustomer

purchase

orders ’

mess-
ages

business

—

—

>

I delive -

supplier
orders |
supplier
goods to
warehouse
to freight
forwarders
freight
forwarders

ries

customers * business * freight forwarders * suppliers

orderung

customers

accepted
overall
delivery

—

purchase

orders

mess-

Internet shopping

ages

delive
ries

busjness
requeste
reservations > —>
inventory
manageme,
~g—granted reservtions<¢—— <¢———acknowledged q¢——— -
receipts
parcel
orders >

-t

supplier
orders |
supplier
goods to
warehouse
to freight
forwarders
freight
forwarders

customers * business * freight forwarders * suppliers

where business = order management * inventory management » warehouse

>

supplier
orders — >
supplien
incoming _
goods
freight
> delivery
freight
forwardef

customers e business
) submit purchase — mc.]uw?. —_—
;:.:grs orders purchaise order availability
eImDK) N E > CaB L > nventory
k (k, X) order managemdnt
(k, X) management
é order copies acknowledaed acknowledged
—— . ”g - -@— incoming -¢——
availability
(k, X) goods
receive |L|< nﬁ_s.sages warehous
messages kX1 O
(k, X)
expected é > orders >
delivery
ccepted (k, X) accept partial delive
elivery delivered goods delivery v
)<—ﬁ<—.<—-<—<‘ C O [delivery
S 6X) accept . eimikixZ elm({k} » 2) (2) e
delivery

the business = customers ° [retailer] * [supplier] * [freight forwarder]

overall run of Alice‘s order

ala base

sshoes", 3

Sauest s
 shoes", 2

acknowledge
reservation

ron
(shoes', 2
o tase
.- shoes, 1
Forase oo disassemble —
(Ute, {p1, p2, p2}) purchase order 125 B2

arctase oo) chat)
. 3 p1=(shoes, 2), %
), P2 (hat', 1) &
p2=i (;hat', 1) article list: & ' _ acknoledge
article list: {p1,p2, p2} ’ reservation

orderung customers
Ute

Sopply oG,
A

(hat',2)

compile
ordered goods

eckront [recewe |
' Ghat', 2
{p1, p2, p2}

(o, goo\, Tigoing go0
hat, b, that hat)

‘messages
((Ute, {p1, p2, p2}),
D 2%12)

Gala o
Ghat,0)

message
Gapected dlery (2
(e, {p1,2,p2), 241

E

inform customer

Gel goods

HC (ute, shoes) I
.(me‘ shoes)
o Ute accopts overal T
delivery delivieries Tl goods,
(Ute, hat)
n J

Gala base
Ghat',0)

e e T opare
o) oo
K
d

o foightorw:
(Ute, {hat})

ation

Seknow. ool
(hat, 2)

5 fight forn
(Ute, {Schuhe
Schuhe, Hut)

Gala base
Ghat', 1)

assemble parcel

Best. Res.
)

ordor
(Ute, {(,shoes", 2),(,hat", 1)})

delivery
(Ute, {hat})

just write

customers ® order management ® inventory management ® warehouse ¢ supplier ¢ freight forwarders

61

customers

order
management

just write
AeBeCoeDeEeFeGeHe|e]eK

How to represent composition of

run snippets?

inventory
management

supplier

warehouse

inventory
management

order
management

warehouse

freight
forwarders

customers

schema for interent shopping

decompose order management . . inventory management) -
) submit customers purchase order list of avail. order suppls supplier supplier
Zl:c:;l:‘zrs purchase order orders O (k, X) order = ord
m(@ > (fw), p)
(k, X) acknowledge warehouse compile
reservation ordered
acknowledged ackrowledged receive goods outgoing pe[w] goods
copies orders - gceipts feceipts (fwym) . miw] 00ds,
(a,n) I (an+p)
: ity ackn. reservation
. ssages
receive
message - D
(k, X, t) freight
= > forwarders
expected L disassemble’ disassemble article instances pick goods assemble k, X’
dzlivery CIEEID ord the order (k,X) artile items (k,X) parces) s
‘order copies
accepted oyerall deliviefies , X9 S freight
delivery deliverd goods N 2 forwar-
delivery
3 ders

mccept Mk} <2) en2) el 2

overall partial
delivery delivery

just write
customers ¢ order management ¢ inventory management ¢ warehouse e supplier ¢ freight forwarders

alternative refinement

requested

business = paperwork ¢ items

p 5 suppl!
submit purchase disassemble reservations order o:g:rsy
purchase order orders elm(X) o~ SU:DW s N
; L) ‘orders g
ordering) > requested
customers - , purchase reservations gfranl ;esetrv. compile
’ orders of products
acknowledged acknowledged e :‘;‘:;;:” vl :::;:d
< Oca’pta receipts (fw),m) = me[w]
d reservations reservations o CLIEEVE T Im(me{w]) goods to
elm(me[w]
—— messages kY) ordered products warehouse
<
message
0 M~ (k, X, 1) messages
parcel orders _
expected inform O & Varcel i 3 " "
delivery customers gr - atickinstances pick goods Wbl o freight
'] forwarders
partial \-/pamlomncopiu e
:c;::isz::'d overall deliveries ':"sa’
. -+ - =
- almifK} xZ) \ partial deliveries ders
overall aecep;:_amal
delivery ey

64

alternative refinement

business = paperwork ¢ items

submit
purchase order
ordering r’_»@
customers [x *X)
(k. X)
purchase
order
‘copies
(k. X)
receive
message <
kX,
(k. X)
expected
. delivery
(k. X)
accept
overall
delivery

accepted overall
delivery

(k. X

accept
overall
delivery

leques(gd supply
purchase disasssmble reservations order orders
orders (am) database (am) Supply =
- orders
= requested (f(w). p)
purchase reservations grant reserv. compile
orders of products orde‘r’ed
acknowledged acknowledged . goods
,—({ceipts receipts (Fowh,) recaive goods
granted (an) ~ I
reservations reservations grant reservation of
messages ordered products
it
c parcel orders o (k, X) elm(X) = (a,n) elm(n+[a]) flw)
— a parcel disassemble ricle inata
article inatances X goods
sutomers Do e e s e
kX —~ k%) =
"\ parce orcer copiea
receive goods pelwl
me{w] —
5 - outgoing
[,
elm(me[w]) incoming goods goods

delivered goods deliveries

elm(fk} < Z)

shelves

to freight
forwarders

parcels

eim({k} x2) ocept (k.2
partial
delivery

items

delivery ~ders

65

Summing up: central ideas of HERAKLIT

classical computer science ... yes, but ...

yes, however not
one interface

modules and composition:
merge “equal” interface
elements

yes, however not
with symbol chains
(“strings”)

statics (data, items):
symbolic representation

yes, however, not
global states and steps

dynamics: steps

/\

classical computer science
HERAKLIT

* jumps in the right direction
* but falls short

adjusts this!

... technically

... adjusted ... such as

but two!
O 2 < D
a - - e

but with terms
over a signature!

composition
calculus

predicate logic,
algebraic specification

f(x, g(a,y))

but local ones! Petri nets

66

