Operating with Quantum Integers:

an Efficient 'Multiples of' Oracle

Javier Sánchez Rivero, Daniel Talaván, José García Alonso, Antonio Ruiz Cortés, Juan Manuel Murillo

Quantum Computing

Software Engineering Tools

Other fields Physicists Mathematicians

Reusability

Composability

Software
Engineering
Support

New Set of Tools

QUANTUM SOFTWARE WITH IMPROVED QUALITY ATTRIBUTES

Outline \quad| Grover's Algorithm and Amplitude |
| :--- |
| Amplification |

Grover's Algorithm

- Quantum searching algorithm.
- n qubits, $N=2^{n}$ states.
- $\mathcal{O}(\sqrt{N})$
- Amplitude Amplification searches for multiple values, M.
- $\mathcal{O}(\sqrt{N / M})$

(3) Oracle 'Multiples of'

- Quantum states as natural numbers

$$
\begin{aligned}
|101\rangle & =|5\rangle \\
|1001\rangle & =|9\rangle \\
|0011\rangle & =|3\rangle
\end{aligned}
$$

- Phase oracle for Amplitude Amplification

- Given number $k \in \mathbb{N}$
- π-phase to numbers multiples of k

Oracle

Algorithm for回 generating the Oracle

- Classical algorithm to build the 'Multiples of' Oracle.
- Input:
- Number of qubits: n
- $k \in \mathbb{N}$

Al-Khwarizmi

- Output:
- Quantum circuit which implements the oracle.

Idea inspiring the algorithm

$$
M \in \mathbb{N}, \quad M=\sum_{i=0}^{m} a_{i} \cdot 2^{i}
$$

Idea inspiring the algorithm

$$
\begin{gathered}
M \in \mathbb{N}, \quad M=\sum_{i=0}^{m} a_{i} \cdot 2^{i} \\
23=10111_{2}=1 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}
\end{gathered}
$$

Idea inspiring the algorithm

$$
\begin{gathered}
M \in \mathbb{N}, \quad M=\sum_{i=0}^{m} a_{i} \cdot 2^{i} \\
23=10111_{2}=1 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}
\end{gathered}
$$

Is 23 multiple of $5 ? \quad 23 \equiv 3 \bmod 5$

$$
23=10111_{2}
$$

Idea inspiring the algorithm

$$
r_{i} \equiv 2^{i} \bmod k, 0 \leq r_{i}<k
$$

Idea inspiring the algorithm

$$
r_{i} \equiv 2^{i} \bmod k, 0 \leq r_{i}<k
$$

Power of 2 Remainder of $2^{\mathrm{i}}, k=5$

$$
\begin{array}{ll}
2^{0}=1 & r_{0}=1 \\
2^{1}=2 & r_{1}=2 \\
2^{2}=4 & r_{2}=4 \\
2^{3}=8 & r_{3}=3 \\
2^{4}=16 & r_{4}=1 \\
2^{5}=32 & r_{5}=2 \\
2^{6}=64 & r_{6}=4
\end{array}
$$

Idea inspiring the algorithm

$$
r_{i} \equiv 2^{i} \bmod k, 0 \leq r_{i}<k
$$

Power of 2 Remainder of $2^{\mathrm{i}}, k=5$

$$
\begin{aligned}
& 2^{0}=1 \\
& 2^{1}=2 \\
& 2^{2}=4 \\
& 2^{3}=8 \\
& 2^{4}=16 \\
& 2^{5}=32 \\
& 2^{6}=64
\end{aligned}
$$

$$
\text { For } 23=10111_{2}
$$

$$
\begin{aligned}
& r_{0}=1 \\
& r_{1}=2 \\
& r_{2}=4 \\
& r_{3}=3 \\
& r_{4}=1 \\
& r_{5}=2 \\
& r_{6}=4
\end{aligned}
$$

$$
\begin{aligned}
23 & \equiv 1 \cdot r_{4}+0 \cdot r_{3}+1 \cdot r_{2}+1 \cdot r_{1}+1 \cdot r_{0} \\
& \equiv 1 \cdot 1+0 \cdot 3+1 \cdot 4+1 \cdot 2+1 \cdot 1 \\
& \equiv 1+4+2+1 \\
& \equiv 8 \equiv 3 \bmod 5
\end{aligned}
$$

Idea inspiring the algorithm

$$
r_{i} \equiv 2^{i} \bmod k, 0 \leq r_{i}<k
$$

Power of 2 Remainder of $2^{i}, k=5$

$$
\begin{aligned}
2^{0}=1 & r_{0}=1 \\
2^{1}=2 & r_{1}=2 \\
2^{2}=4 & r_{2}=4 \\
2^{3}=8 & r_{3}=3 \\
2^{4}=16 & r_{4}=1 \\
2^{5}=32 & r_{5}=2 \\
2^{6}=64 & r_{6}=4
\end{aligned}
$$

For $23=10111_{2}$

$$
23 \equiv 3 \bmod 5
$$

For $25=11001_{2}$

$$
\begin{aligned}
25 & \equiv 1 \cdot r_{4}+1 \cdot r_{3}+0 \cdot r_{2}+0 \cdot r_{1}+1 \cdot r_{0} \\
& \equiv 1 \cdot 1+1 \cdot 3+0 \cdot 4+0 \cdot 2+1 \cdot 1 \\
& \equiv 1+3+1 \\
& \equiv 5 \equiv 0 \bmod 5
\end{aligned}
$$

Idea inspiring the algorithm

$$
r_{i} \equiv 2^{i} \bmod k, 0 \leq r_{i}<k
$$

Power of 2 Remainder of $2^{i}, k=5$

$$
\begin{array}{cl}
2^{0}=1 & r_{0}=1 \\
2^{1}=2 & r_{1}=2 \\
2^{2}=4 & r_{2}=4 \\
2^{3}=8 & r_{3}=3 \\
2^{4}=16 & r_{4}=1 \\
2^{5}=32 & r_{5}=2 \\
2^{6}=64 & r_{6}=4
\end{array}
$$

For $23=10111_{2}$
$23 \equiv 3 \bmod 5$

For $25=11001_{2}$
$25 \equiv 0 \bmod 5$

Building the quantum circuit

Example circuit: Multiples of $k=5$

$$
n=6, \quad N=2^{6}=64, \quad \mathrm{~S}=\{0,1, \ldots, 62,63\}
$$

Depth Analysis

Depth Analysis

Summary

- Presented ongoing research
- Multiples of oracle
- Algorithm for building the oracle given k
- Linear depth on the number of qubits $\mathcal{O}(n)$
- Classical computations $\mathcal{O}(n)$
- Code available: https://github.com/JSRivero/oracle-multiples

Future Work

- Creation of reusable quantum software for programmers
- Step in the creation of a bigger set of operations
- Explore other classical operations with integers
- Composable tools for creation of complex algorithms
javier.sanchez@cenits.es

