Operating with Quantum Integers:

an Efficient 'Multiples of' Oracle

Javier Sánchez Rivero, Daniel Talaván, José García Alonso, Antonio Ruiz Cortés, Juan Manuel Murillo

Other fields Physicists Mathematicians

Outline

- Grover's Algorithm and Amplitude Amplification
- Implementation of Grover's Algorithm
- ⁽²⁾ 'Multiples of' Oracle
- Algorithm for Less-Than Oracle
- Discussion
 - Summary and Future Works

Grover's Algorithm

- Quantum searching algorithm.
- *n* qubits, $N = 2^n$ states.
- $\mathcal{O}(\sqrt{N})$
- Amplitude Amplification searches for multiple values, *M*.
- $\mathcal{O}(\sqrt{N/M})$

Principles of Quantum Artificial Intelligence: Quantum Problem Solving and Machine Learning, 2nd Edition - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Lov-Kumar-Grover-originator-of-the-Grovers-searchalgorithm_fig4_342012452

Oracle 'Multiples of'

Quantum states as natural numbers

 $|101\rangle = |5\rangle$ $|1001\rangle = |9\rangle$ $|0011\rangle = |3\rangle$

- Phase oracle for Amplitude Amplification
- Given number $k \in \mathbb{N}$
- π -phase to numbers multiples of k

Algorithm for generating the Oracle

- Classical algorithm to build the 'Multiples of' Oracle.
- Input:
 - Number of qubits: n
 - $k \in \mathbb{N}$
- Output:
 - Quantum circuit which implements the oracle.

$$M \in \mathbb{N}, \qquad M = \sum_{i=0}^{m} a_i \cdot 2^i$$

$$M \in \mathbb{N}, \qquad M = \sum_{i=0}^{m} a_i \cdot 2^i$$

$$23 = 10111_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

$$r_i \equiv 2^i \mod k, \ 0 \le r_i < k$$

$$r_i \equiv 2^i \mod k, \ 0 \le r_i < k$$

Power of 2 Remainder of 2^i , k = 5

$2^0 = 1$	$r_0 = 1$
$2^1 = 2$	$r_1 = 2$
$2^2 = 4$	$r_2 = 4$
$2^3 = 8$	$r_3 = 3$
$2^4 = 16$	$r_{4} = 1$
$2^5 = 32$	$r_{5} = 2$
$2^6 = 64$	$r_{6} = 4$

 $r_i \equiv 2^i \mod k, \ 0 \le r_i < k$

Power of 2 Remainder of 2^i , k = 5

For 23 = 10111_2 23 = $1 \cdot r_4 + 0 \cdot r_3 + 1 \cdot r_2 + 1 \cdot r_1 + 1 \cdot r_0$ = $1 \cdot 1 + 0 \cdot 3 + 1 \cdot 4 + 1 \cdot 2 + 1 \cdot 1$ = 1 + 4 + 2 + 1= $8 \equiv 3 \mod 5$

 $r_i \equiv 2^i \mod k, \ 0 \le r_i < k$

Power of 2 Remainder of 2^i , k = 5

For $23 = 10111_2$ $23 \equiv 3 \mod 5$ For $25 = 11001_2$ $25 \equiv 1 \cdot r_4 + 1 \cdot r_3 + 0 \cdot r_2 + 0 \cdot r_1 + 1 \cdot r_0$ $\equiv 1 \cdot 1 + 1 \cdot 3 + 0 \cdot 4 + 0 \cdot 2 + 1 \cdot 1$ $\equiv 1 + 3 + 1$ $\equiv 5 \equiv 0 \mod 5$

$$r_i \equiv 2^i \mod k, \ 0 \le r_i < k$$

Power of 2 Remainder of 2^i , k = 5

For $23 \equiv 10111_2$ $23 \equiv 3 \mod 5$

For $25 \equiv 11001_2$ $25 \equiv 0 \mod 5$

Building the quantum circuit

Example circuit: Multiples of k = 5

$$n = 6,$$
 $N = 2^6 = 64,$ $S = \{0, 1, ..., 62, 63\}$

Depth Analysis

Depth Analysis

- Presented ongoing research
- Multiples of oracle
- Algorithm for building the oracle given k
- Linear depth on the number of qubits $\mathcal{O}(n)$
- Classical computations $\mathcal{O}(n)$
- Code available: <u>https://github.com/JSRivero/oracle-multiples</u>

Future Work 🤝

- Creation of reusable quantum software for programmers
- Step in the creation of a bigger set of operations
- Explore other classical operations with integers
- Composable tools for creation of complex algorithms

Thank you for your attention

github.com/JSRivero

javier.sanchez@cenits.es

