PULCEO

— Tempus fugit—

PULCEO in Action

Towards API-driven Cloud-Edge Orchestration
with PULCEO: A Proof of Concept

Sebastian Bohm and Guido Wirtz

University of Bamberg, Germany

https://github.com/spboehm/pulceo-misc

1/31

https://github.com/spboehm/pulceo-misc

Cloud-Edge Orchestration

Edge computing: Placing of computational Infrastructure

resources close to end-users. 5
SLA & QoE

(~ 15 ms application

Algorithms
Strategies
Policies

Many solutions exist for service placement

response time)

But, limited
R Applications

e Reproducibility

o (General) Applica bility Similar infrastructures, optimization goals, and
orchestration operations.

because of : :
Simulations are prevalent: only 19 out of 99

e custom implementations solutions used a small test-bed.!

e missing real-world experiments

1.S. Smolka and Z. A. Mann, “Evaluation of fog application placement algorithms: a survey,” Computing, vol. 104, no. 6,
pp. 1397-1423, Jun. 2022.

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

3/31

Solution: Holistic Management

e Creation of Topology:

Creatign

= Nodes: Edge and fog devices, virtual machines, etc. {)
= Links: Relations between nodes for measuring round-trip time Homerire
and bandwidth 3
e Monitoring: Various kind of metrics (CPU, ...), sampling rate, etc. Operatpr
e Operation: Resource allocation and service placement Evavluamn
e Evaluation: Data export, large-scale data analytics, etc.
e Documentation: Publishing of reports and results, raw data, etc. D()chmentati

e (Deletion: Tearing down of environments)

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

4 /31

PULCEO

Platform for Universal and Lightweight Cloud-Edge Orchestration

Domain Model - Architecture - Node Agent

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

PULCEOQO’s Domain Model

Extracted from 27 peer-reviewed service placement solutions?

Provider Application
- name: String - resourceld: String S resourceld: String
- type: String ?— - name: String 1 * - node: Node
- nodes: List<Node> - applicationComponents: List<ApplicationComponent> - name: String
- credentials: Map<String, String> 1 . - image: String
- port: int
- protocol: String
\L - type: String
: * * - envVars: Map<String, String>
Link
Node
S
- resourceld: String 1 op
o - resourceld: String CPUResource
- name: String . Stri
. sreNode | name: String
- srcNode: Node -—— - type: String Oﬁ cpuAllocatable: CPU
- destNode: Node 1 - layer: int - cpuCapacity: CPU
1 - role: String
- group: String
X X destode | country: String MemoryResource
. 1. . .
MetricRequest state: String - memoryAllogatable: Memory
i - city: String - memoryCapacity: Memory
- resou;celd. String - latitude: double
- type: Strin
P g. * - longitude: double
- recurrence: int - cpuResource: CPUResource StorageResource
- metrics: List<Metric>
- memoryResource: MemoryResource
- options: Map<String, String> Oﬁ storageAllocatable: Storage
- storageResource: StorageResource
- storageCapacity: Storage
1 - tags: List<Tag>
Event 1

Metric

%*— value: double
- unit: String

- timestamp: Timestamp
- type: String
- payload: String

ApplicationComponent

CPU

- GFlop: float

- MIPS: float

- averageFrequency: float
- bogoMIPS: float

- cores: int

- maximalFrequency: float
- minimalFrequency: float

- modelName: String

Tag

- key: String

1. https://spboehm.github.io/pulceo-misc/

1 value: String

https://github.com/spboehm/pulceo-misc

- shares: int

cpuAllocatable
pﬁ slots: float

%’ucapac'w threads: int

*>—
1
>
1 memoryAllocatable Memory
_1|- size: float
memoryCapacity
- slots: float
1
*>—
1
*——— Storage
1 storageAllocatable
1|- size: float
storageCapacit;
% - slots: float
1
*>—
1 Legend
>
1 pulceo-service-manager (PSM)

pulceo-resource-manager (PRM)

[pulceo-monitoring-service (PMS) J

5/31

https://github.com/spboehm/pulceo-misc

6/31

PULCEOQO’s Architecture

e Decoupled orchestration with a RESTful HTTP APl exposed by an API Gateway

* Microservice architecture aligned to a scientific meta-study?

e Real-time data streaming via WebSockets

(—>» pulceo-resource-manager (PRM) +---1---

<

=

o

. IS

APl - N Reverse %(;o

<> » pulceo-monitoring-service (PMS) ---1--4---» Proxy ---» §
- Gateway (PNA) o
2

A 1 :
Orchestration %
Solution L» pulceo-service-manager (PSM) o

WebSockets IM

1. B. Costa, J. Bachiega, L. R. de Carvalho, and A. P. F. Araujo, “Orchestration in Fog Computing: A Comprehensive Survey,” ACM
Comput. Surv., vol. 55, no. 2, pp. 1-34, Feb. 2023, doi: 10.1145/3486221.

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

7 /31

PULCEO Node Agent Architecture

e RESTful HTTP API for instructions
e Monitoring data transmitted via MQTT

e Latency and bandwidth measurement with ping and iperf3

e Standalone Kubernetes clusters as container manager

o

S

: ! ' User \

|—> 80/tcp ! > Jser :
hd (:\ ,: :\ Appljcatlon 1 ,:

o 80/tcp—»

I Reverse

9 » Proxy ——> pulceo-node-agent (PNA)
z (PNA)

]

e
S I L ping
EReaEal-}

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

8/31

Case Study

Topology - Orchestration workflow

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

9/31

Topology

(4, 16, 32)
Cloud Layer USA Service Placement
V/rg/n/a
<(82, 43), <(88, 39), " .
(83, 65)> (87, 65)> HTTP HTTP

(2, 8, 32 2 4, 32)
Fog Layer 1 Par/s Frankfurt

<(33, 54)> <(24, 64)>

GER
Bamberg

(2, 2, 27)

Fog Layer 2

loT Layer ~ ------mmmmmmmmmmmmomooooooo Gateways, Sensors, Actuators, etC.==================@@omuum-.

Representational cloud-edge topology with nodes, links, and requests for service placement.

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

10 / 31

Creation

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

11 / 31

Providers

Providers supply computational resources, e.g., Compute, Network, Storage, etc.

Two types of providers:

e On-premises providers (any virtual machine), built-in

e Cloud providers (API availability), e.g., Microsoft Azure

Example: Creation of Microsoft Azure as provider with a service principal

——url http://localhost:8081/api/vl/providers \

—-—data '{
"providerName": "azure-provider",
"providerType": "AZURE",
"clientId": "00000000-00000000-00000000-00000000",
"clientSecret": "AAM,
"tenantId": "00000000-00000000-00000000-00000000",

"subscriptionId": "00000000-00000000-00000000-00000000"

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

12 / 31

Nodes (fogl)

e Provider: Microsoft Azure (Cloud)

e Capabilities: 2 vCPU, 8 GB memory, 32 GB
storage

< P
e | ocation: France, Paris
——url http://localhost:8081/api/vl/nodes \ (2’ 8, 32) < <
FRA
| fogl
Paris
——data '{ R N
"nodeType" :"AZURE",
"providerName":"azure-provider",
"name":"fogl",
"type":"fog",
"cpu":"2",
"memory":"8",
"region":"francecentral",
"tags": []

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

13 /31

Nodes (fog3)

e Provider: Local data center (On-premises)

e Capabilities: 2 vCPU, 2 GB memory, 27 GB
storage

e Location: Bamberg, Germany

(2,8,32) F 4

——url http://localhost:8081/api/vl/nodes \
FRA
Paris

——data '{ K N
"nodeType" : "ONPREM",
"type": "fog—",

"name": "fog3",
"providerName":"default",

"hostname":"h5138.pi.uni-bamberg.de",
"pnaInitToken":"XXXXX", GER
"country": "Germany", Bamberg

"state": "Bavaria",
(2, 2, 27)

"city": "Bamberg",
"latitude": 49.903¢,
"longitude": 10.8700,
"tags": []

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

Links (Example fog3-fogl)

Link between fog3 and fogl

Represents a logical connection

Later used to obtain round-trip time and

bandwidth between nodes

<(,)>: <(latency, bandwidth), ...>

——url http://localhost:8081/api/v1/links \

——data '{
"linkType": "NODE_LINK",
"name": "fog3-fogl",
"srcNodeId": "fog3",
"destNodeId": "fogl"

A S
(2,8,32) k <
FRA
fogl
Paris o8
\ ~
<(,

GER
Bamberg

(2, 2, 27)

https://github.com/spboehm/pulceo-misc

14 / 31

https://github.com/spboehm/pulceo-misc

15 /31

Monitoring

Nodes - Links

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

16 / 31

Metric Requests

e Collection of monitoring data

= CPU, memory, storage, and network
utilization for nodes and applications

< b
= |CMP round-trip time, TCP & UDP

bandwidth for links

. : (2,8,32) F <
* Individual and batch (*) assignments FRA(

[fog1
e Example: Latency all for links, once per Paris .
hour (recurrence 3600s = 1h) \
(33, 54)>

——url http://localhost:8081/api/vl/metric-reques

GER
Bamberg

(2, 2, 27)

—-—data '{
"type":"icmp-rtt",
"linkId" : "*"’
"recurrence":"3600"

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

17 /31

Operation

Workload - Resource Management - Service Placement

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

Workload

e Placement of edge-iot-simulator
(eis)! on node fogl

e Mimics a typical application:

= Simulates a temperature
sensor (sends temperature
readings at regular intervals)

= Allows to perform HTTP
requests to simulate a
microservice application

e Example resource assignments:
= 1 vCPU (1000 shares)
= 1 GB memory (1000 MB)

1. https://github.com/spboehm/edge-iot-simulator

(2, 8,32) /

fogl

FRA
Paris

(4, 16, 32)

cloudl UsA

fog2

GER
Bamberg

(2, 2,27)

Service Placement

(2, 4, 32)
GER
Frankfurt

https://github.com/spboehm/pulceo-misc

Virginia /\

(1,1,0)

HTTP

O

@

HTTP

O

HTTP

18 /31

https://github.com/spboehm/pulceo-misc

19 /31

Resource Management (Example CPU

Read CPU resources of fogl Update CPU resources of fogl

——url http://localhost:8081/api/vl/nodes/fogl/cp —-—url http://localhost:8081/api/vl/nodes/fogl/cp

"value": 1000

"yuid": "8aeaedd7-ab552-4ea2-86a3-2bd1£79del117"
"nodeUUID": "el076174-380a-47e4-a468-b9fdlblea
"nodeName": "fogl",

"cpuCapacity": {...},

"cpuAllocatable": {
"modelName": "Intel (R) Xeon(R) Platinum 82
"cores": 2,
"threads": 2,
"bogoMIPS": 5187.81,
"minimalFrequency": 2593.906,
"averageFrequency": 2593.906,
"maximalFrequency": 2593.906, "shares": 1000,
"shares": 2000,
"slots": 0.0,
"mips": 5187.81,
"gflop": 0.0

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

20 /31

Applications (Service Placement

——url http://localhost:8081/api/vl/applications \

—-—data '{
"nodeId": "fogl",
"name": "edge-iot-simulator",

"applicationComponents": [
{

"name": "component-eis",

"image": "ghcr.io/spboehm/edge-iot-simulator:v1.1.0",

"port": 80,

"protocol": "HTTPS",

"applicationComponentType": "PUBLIC",Resource utilization with

"environmentVariables": {
"MQTT_SERVER_NAME" : "XXXXX.sl.eu.hivemg.cloud",
"MQTT_PORT":"8883",
"MQTT_TLS":"True",
"MQTT_USERNAME" : "XXXXX",
"MQTT_PASSWORD" : "XXXXX",
"MQTT_CLIENT_ID":"fogl-edge—-iot-simulator",
"WEB_PORT": 80

} v

Resource utilization with If needed, further Metrics Requests to monitor the placed
Applications can be issued.
https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

21 /31

Evaluation

APl Requests - Idle Resource Utilization - Link Quality Metrics - Application Resource
Utilization - Application Response Time

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

APl Requests

41 requests required to perform the entire orchestration workflow

Table 2. Overview of API requests.

+# Service Endpoint Method Count Explanation

1 PRM /providers POST 1 Register Azure as Provider

2 PRM /nodes POST 4 Create Nodes

3 PRM /nodes/fog3 GET 1 Read properties of Node fog3

4 PRM /nodes/fog3 PATCH 1 Update layer of fog3 to 2

5 PRM /links POST 6 Create Links between Nodes

6 PMS /metric-requests POST 7 Create requests for Nodes and Links
7 PSM /applications POST 4 Create edge-iot-simulator

8 PRM /nodes/{id}/cpu GET 4 Read allocatable shares

9 PRM /nodes/{id}/cpu PATCH 4 Update allocatable shares

10 PRM /nodes/{id}/memory GET 4 Read allocatable capacity

11 PRM /nodes/{id} /memory PATCH 4 Update allocatable capacity

12 PMS /metric-requests POST 4 Create requests for Applications

https://github.com/spboehm/pulceo-misc

22 /31

https://github.com/spboehm/pulceo-misc

23 /31

ldle Resource Utilization by Nodes

Including pulceo-node-agent, fully configured monitoring, and Kubernetes

CPU Utilization Memory Utilization

100

8
s 66.71
= : 5.13 =
3 5 5 42.18
T4 © T
N s 21.39
=, = 25 (11.02 ==
——
0 0
cloud1l fogl fog2 fog3 cloudl fogl fog2 fog3
Node Node
Storage Utilization Traffic Received (Rx) and Transmitted (Tx)
6
30
21.82 ,Q 8 % § '5
o 4 o ™ O 2 ™
=20 E‘;] Traffic
< c
2 o 5 | s N =
S [ee0 (950 s a3 o~
5 10 e e == =2
(90]
Q
o
0 0 —
cloud1 fogl fog?2 fog3 cloud1 fogl fog?2 fog3
Node Node

https://github.com/spboehm/pulceo-misc E

https://github.com/spboehm/pulceo-misc

Link Quality Metrics

Using a high-performance and stable network for on-premises and cloud

Table 3. ICMP round-trip time (ms) between nodes.

V1 V2 Min Mean Max Med SD
cloudl fogl 80.795 81.142 82.924 81.098 0.402
cloudl fog2 86.709 88.896 91.149 89.038 1.217
fogl cloudl 80.779 81.107 82.327 81.024 0.304
fog?2 cloud1 86.460 87.802 88.819 87.960 0.548
fog3 fogl 25.558 26.139 33.058 25.802 1.487
fog3 fog?2 13.077 15.402 24.150 14.709 2.472
Table 4. TCP and UDP bandwidth (Mbps) between nodes.
TCP UDP
U1 Vo Min Mean Max Med SD Min Mean Max Med SD
cloudl fogl 65.000 65.000 65.000 65.000 0.000 63.800 63.942 64.000 63.900 0.058
cloudl fog2 65.000 65.000 65.000 65.000 0.000 63.800 63.875 63.900 63.900 0.044
fogl cloudl 43.400 64.061 65.000 65.000 4.504 56.200 63.354 64.000 64.000 2.084
fog2 cloudl 39.400 63.887 65.000 65.000 5.338 55.300 63.517 63.900 63.900 1.751
fogd fogl 53.500 64.392 65.000 65.000 2.385 64.400 64.443 64.600 64.400 0.066
fogd fog2 64.400 64.950 65.000 65.000 0.169 64.700 64.762 64.800 64.800 0.049

https://github.com/spboehm/pulceo-misc

24 /31

https://github.com/spboehm/pulceo-misc

25 /31

Application Resource Utilization

With deployed edge-iot-simulators (eis)

CPU Utilization | Memory Utilization

Ll

U L L

20+ - g —

151 o)
(18

101 w

22:00 04:00 10:00 16:00 22:00 22:00 04:00 10:00 16:00 22:00
Time

e

Applications — edge-iot-simulator — pulceo-node-agent — traefik

https://github.com/spboehm/pulceo-misc E

https://github.com/spboehm/pulceo-misc

Application Response Time

e Measured by edge-iot-simulators (eis)

e \alues have been submitted in a standardized JSON format via MQTT

ol
o
o

N
o
o

w
o
o

200

100

Application Response Time (ms)

o

cloudl-eis —
fogl-eis

306.32
_

fog2-eis - fog 3—eis - gatewayl-eis — gatewayl-eis - gatewayl-eis - gatewayl-eis -
cloudl-eis fog2-eis cloudl-eis fogl-eis fog2-eis fog3-eis

Source Application — Destination Application

127.90

https://github.com/spboehm/pulceo-misc

26 /31

https://github.com/spboehm/pulceo-misc

27 /31

Documentation

Orchestration Data

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

28 /31

Orchestration Data

JSON export of all entities of the domain model: Reports for the two phases:
Providers, Nodes, Links, Metric-Requests, Applica-
tions, Resources, CPUs, Memory, Events

Example for nodes:

——url http://localhost:8081/api/vi/nodes \

» JSON output for nodes

SummerS0C2024-prod-load

https://github.com/spboehm/pulceo-misc %%

https://github.com/spboehm/pulceo-misc

29 /31

Related Solutions

EU Projects (Horizon Research), like CODECO, FogAtlas, SODALITE@RT, ENACT, etc.

e Latency and bandwidth measurement not fully implemented
e Scheduling for service placement often pre-implemented

e Focus not on scientific experiments

Conceptual and prototypical research efforts, like Sophos, Fluidity, ACOA, etc.

e No holistic cloud-edge orchestration (see above)

e |Lack of documentation

Out of scope: Cloud and commercial solutions

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

30 /31

Contributions

e Fully documented RESTful HTTP API for universal orchestration (OpenAPI specification)
e Decoupled and holistic cloud-edge orchestration with evaluation and documentation

e Strong scientific and industrial foundation

» Platform architecture based on a scientific meta-study?

= Feature engineering based on scientific, peer-reviewed service placement
publications?

* Implementation following an industry standard (OpenFog RA)?

Limitations: Only one representational architecture implemented with stable network
conditions has been reproduced yet

1. B. Costa, J. Bachiega, L. R. de Carvalho, and A. P. F. Araujo, “Orchestration in Fog Computing: A Comprehensive Survey,” ACM
Comput. Surv., vol. 55, no. 2, pp. 1-34, Feb. 2023, doi: 10.1145/3486221.
2. https://spboehm.github.io/pulceo-misc/

3.S. Bohm and G. Wirtz, “PULCEO - A Novel Architecture for Universal and Lightweight Cloud-Edge Orchestration,” in 2023 IEEE
International Conference on Service-Oriented System Engineering (SOSE), Athens, Greece: IEEE, Jul. 2023, pp. 37-47.

https://github.com/spboehm/pulceo-misc %

https://github.com/spboehm/pulceo-misc

Future Work

Towards an API-driven Approach for Universal and
Lightweight Cloud-Edge Orchestration

1% Sebastian Bohm
Distributed Systems Group
University of Bamberg
Bamberg, Germany
sebastian.boehm @uni-bamberg.de

Abstracti—Service placement in cloud-edge environments is
complex because workloads must be placed on constrained nodes
based on particular objectives, like response time, energy, or
cost. Many advanced techniques emerged over time to tackle
this issue. However, real-world experiments are the minor-
ity. Theoretical and simulation-based evaluations are prevalent.
We present a Platform for Universal and Lightweight Cloud-
Edge Orchestration (PULCEQ) to foster real-world evaluations.
It supports creating, operating, monitoring, evaluating, and
documenting orchestration solutions via a RESTful APL. For
evaluation, we performed a case study. We used PULCEO to
reproduce a representative and theoretically designed solution
for service placement in a real-world environment. Our plat-
form can transfer theoretical orchestration solutions to real-
world environments. Consequently, our platform simplifies real-

284 Guido Wirtz
Distributed Systems Group
University of Bamberg
Bamberg, Germany
guido.wirtz@uni-bamberg.de

but statically assumed by many solutions [7], although the
authors mention that they should be collected dynamically.

We tackle this issue by providing a Platform for Universal
and Lightweight Cloud-Edge Orchestration (PULCEQ) that
contributes the most essential features to simplify managing
cloud-edge environments. It holistically manages the entire
lifecycle of cloud-edge orchestration architectures by exposing
a fully documented RESTful APIL. Users can facilitate the
RESTful API to create, operate, and monitor the cloud-
edge environment. Furthermore, it simplifies the consistent
evaluation and documentation with predefined orchestration
reports and zero-touch orchestration data export.

S. Bohm and G. Wirtz, “Towards an API-driven Approach for Universal and Lightweight
Cloud-Edge Orchestration,” in 2024 IEEE International Conference on Service-Oriented
System Engineering (SOSE), accepted, to be published.

https://github.com/spboehm/pulceo-misc

Further tests with other
service placement
strategies, as done for
IEEE SOSE 2024: Full real-
world realization of Qos-
aware Deployment of loT
Application Through the
Fog, by Brogi and Forti
(2017)

Source Code, Container Images,
OpenAPI Specifications, and
Documentation

31 /31

https://github.com/spboehm/pulceo-misc

