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Outline

• Distributed Systems and State-of-the-Art

• Distributed Intelligence 

• Human Eco-systems vs Distributed Computing Continuum Systems 

• Computing Continuum Monitoring and Self-healing

• Data Protocols for Computing  Continuum

• Clustered Edge Intelligence through Active Inference



Evolution in Distributed Systems 
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Donta, P.K., et al. "Exploring the potential of distributed computing continuum systems." Computers 12.10 (2023): 198.



Current State

• Distributed Systems are key to our 
society

• Underlie our critical infrastructures 
and applications (Smart cities, 
Healthcare, Autonomous vehicles,…)

• Interconnectedness (fabric) of 
components (HW, SW, People) 
induces complexity 

• We increasingly see fundamental 
issues we need to address
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Infrastructure

➢ Computing continuum

➢ Application performance highly dependent on the underlying infrastructure

○ Heterogeneity of resources & heterogeneous distribution

○ Resources diverse interconnection
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Use cases 
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Distributed Computing Continuum Systems

Benefits

• Bandwidth Optimization

• Scalability & Availability

• Low latency

• Resource optimization & Load 
balancing

• Reliability or Flexibility 

Challenges

• Interoperability

• Data Synchronization

• Governing resources

• Privacy

7
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Distributed Intelligence in Computing Continuum

Casamayor Pujol, V., Donta, P. K., Morichetta, A., Murturi, I., & Dustdar, S. (2022, November). Distributed computing continuum systems–opportunities and 
research challenges. In International Conference on Service-Oriented Computing (pp. 405-407). Cham: Springer Nature Switzerland.



Traditional Approaches
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Artificial Intelligence Machine Learning

Requirement of huge input/training data

Computational hungry

Relatively Expensive (Cost vs Benefits)

Adversarial Attacks

Difficulty in Real-time Accuracy verification 

Resource constraint

Techniques used in Previous and Majority of Ongoing works



Infrastructure Systems

Regulation Systems
Endocrine System

Lymphatic System

Cardiovascular System

Skeletal System

Nervous System

• Brain

• Spinal Cord

• Cranial Nerves

• Spinal Nerves

Control Internal Environment, Memory and Learning (86 billion neurons)

• Oxygen

• White Blood Cells

• Hormones

• Nutrients

Helping the body meet the demands (40k neurons)

The human body is comprised of a series of complex systems, including:
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Human Eco-system vs. Computing Continuum

Alshami, A. M. (2019). Pain: is it all in the brain or the heart?. Current Pain and Headache Reports, 23, 1-4
Pujol, V., Donta, P.K., et. Al.., 2022, November. Distributed computing continuum systems–opportunities and research challenges. In International Conference on Service-Oriented Computing (pp. 405-407). Cham: Springer Nature..

Human Ecosystem



Cardiovascular System

Skeletal System

Lymphatic System

Endocrine System

The human body is comprised of a series of complex systems, including:

Nervous System Infrastructure Systems

Regulation Systems
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Human Eco-system vs. Computing Continuum

Human Ecosystem



Human Ecosystem

• Part of the immune system

• Protects your body against foreign invaders

Infrastructure Systems

Cardiovascular System

Skeletal System

Lymphatic System

Endocrine System
Regulation Systems

The human body is comprised of a series of complex systems, including:

Nervous System

12



Fog DevicesMobile Edge 
Computing

IoT Smart Things

Edge Devices
Edge Devices

Internet

Distributed Computing Continuum 
Systems are composite complex systems

Infrastructure Systems

• Devices & Sensors

• Learning & Knowledge

Skeletal System

Regulation Systems

• Elasticity Systems

• Self-adaptive Systems

• Fault-tolerance Systems

• Privacy & Security

Nervous  System
Cardiovascular  System

.

.

.

• Connection & Communication

• Data Flow

Learning & Knowledge

CPU

Connection fail

Device fail
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Human Ecosystem vs. Distributed Continuum Systems

Human Ecosystem

Feedback Loops and adaptability

Communication and 
coordination with other parts

Decision-making Consciousness

Self-healing mechanism

Distributed Computing 
Continuum Systems

Monitoring and self-healing devices1

Efficient and Adaptable 
Resource management

Explainability through 
Causal relations

Synchronization and Coordination

QoE & QoS

Design intelligent data protocols2

Handle unpredictable issues

1P.K., Donta, et al. "Governance and sustainability of distributed continuum systems: A big data approach." Journal of Big Data 10.1 (2023): 53.
2P.K., Donta and S. Dustdar “Intelligent Data protocols at the Edge”, IEEE SERVICES 2023. 



Computing Continuum Monitoring, 
Diagnosis and Cure
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Diagnosis and Cure

16P.K., Donta, et al. "Governance and sustainability of distributed continuum systems: A big data approach." Journal of Big Data 10.1 (2023): 53.



Self-healing Agent
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P.K., Donta, et al. "Governance and sustainability of distributed continuum systems: A big data approach." Journal of Big Data 10.1 (2023): 53.



Data Protocols and Intelligence
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• P. K. Donta and S. Dustdar (2023) Towards Intelligent Data Protocols for the Edge, IEEE intelligent EDGE 2023 (IEEE SERVICES 2023)
• Donta, P. K., Srirama, S. N., Amgoth, T., & Annavarapu, C. S. R. (2022). Survey on recent advances in IoT application layer protocols and 

machine learning scope for research directions. Digital Communications and Networks, 8(5), 727-744.



Data Protocols 
CoAP (Constrained Application Protocol)

MQTT (Message Queue Telemetry Transport)

AMQP (Advanced Message Queuing Protocol)

DDS (Data Distribution Service)

P. K. Donta and S. Dustdar (2023) Towards Intelligent Data Protocols for the Edge, IEEE intelligent EDGE 2023 (IEEE SERVICES 2023)
19



Deterministic Rules – Data Protocols

• Protocols follow deterministic set of rules

• Benefits: 
• Low overhead

• Limited computing or memory resources
• Easy to track the misconducts

• Predictability

• Limitations

• Flexibility and Adaptability
• Handling uncertainty

• Scalability

• Dynamic decision making systems
20



Intelligence in Data Protocols

• Scalability 

• Adaptability

• Handling uncertainty

• Dynamic decision making, such as 

• Message filtering

• Message expiry prediction

• Resource usage (memory and CPU)
• Congestion control

• Reliability
21

• Need of additional resources (to 
store history and perform analysis)

• Decide where learning to be 
performed

• Deciding run time accuracy 

• Deciding suitable AI/ML for the 
protocols properties

Benefits Implications



Develop Novel Intelligent Data Protocol

• We intended to develop an lightweight intelligent protocol for 
Computing continuum systems by mitigating the following issues:

• Message filtering

• Message expiry prediction

• Resource usage (memory and CPU)

• Congestion control 

• Adaptable and 

• Interoperable features 
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Equilibrium in Computing Continuum through 
Active Inference

23

Sedlak, B., Pujol, V. C., Donta, P. K., & Dustdar, S. (2024). Equilibrium in the Computing Continuum through Active 
Inference. Future Generation Computer Systems.



Bayesian Network Learning
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Causality 
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Causality is the study of how things influence one other, how causes lead to effects.

Surprises are generally created by low-probability outcomes

Image sources: https://www.btelligent.com/en/blog/127801ea523cbf313725fcb60289fbf8-4/
https://ru.pinterest.com/pin/489555421981720364/
https://imgflip.com/gif/6keaol

https://ru.pinterest.com/pin/489555421981720364/


Free Energy
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The discrepancy (or uncertainty) between the agent’s understanding of the 
process and reality is called Free Energy (FE)

Lower the Free Energy (FE), higher the accuracy. 

This is commonly known as Bayesian inference and allows agents to 
use existing beliefs (widely known as priors) to calculate the 
probability of related events. 

Image source: https://tenor.com/view/rain-umbrella-thor-gif-17980481



Markov Blanket

In a Bayesian Network, the Markov Blanket of a node 

(N) is composed of the parents (P), the children (C) and 

the co-parents of the children (S).  

P P

N S

C C

The Markov Blanket of a random variable is the subset of nodes that provide enough 

information to statistically infer its value. Concept from Judea Pearl [1].

A tool for causal filtering.

27[1] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publis hers Inc.



Causal Inference

Causal inference is a technique aiming at learning causal relationships between 
variables, and then being able to model and predict the system causal behavior.

➢ 3 Rungs on the ladder of causation. [2]

○ Observational

○ Interventional

○ Counterfactual

➢ Explainability capacity

SLO

28[2] J. Pearl and D. Mackenzie (2018), The Book of Why: The New Science of Cause and Effect. USA: Basic Books, Inc.,



Active Inference
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Minimize  
uncertainty 
through FE 

Predict sensory inputs

Action: Change world

Observation

Perception: Change beliefs

Figure: Action – Perception Cycle



Service Level Objective - Type

Three types of SLOs

30

whether a system is able to fulfill its intended function at a point in time



Service Level Objective as system requirements

Components: Service + host + SLO + elasticity strategies
Tailored adaptations to service and host

31



DeepSLOs

➢ A construct we envision relating SLOs

➢ Provides a complete view of DCC system

➢ Allows aggregation towards higher abstractions

SLO 
B

SLO 
C

SLO 
A

SLO 
D
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Running Example

• Reflected in most of the architecture

• Use Case
Distributed video processing architecture where 
IoT streams are transformed on edge devices to 
preserve individual’s privacy. After privacy 
enforcement, distribute streams over cloud.

• Hierarchical network structure
IoT devices provide streams to edge devices;
streams processed locally at edge devices;
video stream properties are configurable

33



Collaborative Edge Intelligence Framework
3 major contributions in interplay:

34

1. Continuous model accuracy and local SLO fulfilment
a. Static BNL and Inference
b. Continuous BNL and Inference (AIF)



Collaborative Edge Intelligence Framework
3 major contributions in interplay:

35

1. Continuous model accuracy and local SLO fulfilment

2. Federation and combination of models

a. Static BNL and Inference
b. Continuous BNL and Inference (AIF)



Collaborative Edge Intelligence Framework
3 major contributions in interplay:

36

1. Continuous model accuracy and local SLO fulfilment

2. Federation and combination of models
3. Collaboration between cellular structures

a. Static BNL and Inference
b. Continuous BNL and Inference (AIF)



1a – Static BNL and Inference

● Basic mechanism for assuring SLOs at individual devices
● Requires training data in upfront and is prone to data shifts
● Evaluates possible configurations through a 3-step method

37



1a – Static BNL and Inference (2)

38

❏ P(SLO < x) for all

variable combinations

❏ Find Bayes-optimal

system configuration

❏ Causality filter [1,4]

❏ Identify variables that have an 

impact on SLO fulfillment

❏ Structure Learning
Hill-Climb Search (HCS)
Dir. Acyclic Graph (DAG)

❏ Parameter Learning
Max. Likelihood Estimation
Conditional Prob. Table (CPT)

Bayesian Network Learning (BNL) Markov Blanket (MB) Selection Knowledge Extraction



1b – Active Inference Cycle

● AIF agent → Equilibrium-Oriented SLO Compliance (EOSC) model
● Agent uses SLOs as preferences during continuous adaptation
● BN trained incrementally from incoming observations
● Beliefs updated according to prediction errors

39



1b – AIF Agent Behaviour/Action
Determined by three factors:

● Pragmatic value (pv)
Summarizes QoE SLOs (e.g., resolution) 

● Risk assigned (ra)
Summarizes QoS SLOs (e.g., network limit)

pv & ra calculated as separate factors from MBs;
configurations rated according to SLO fulfilment;
interpolation between known configurations

● Information gain (ig)
Continued on the next slide
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1b – AIF Agent Behaviour/Action (2)

● Information gain (ig)
○ Favours configurations that promise model improvement
○ Summarizes surprise for observations included in the MB
○ Hyperparameter (e) allows exploring designated areas

AIF Action-Perception cycle:

1. Calculate surprise for current batch of observations 
2. Retrain structure (or parameters) depending on surprise
3. Calculate behavioural factor for empirically evaluated configs
4. Interpolate between known configurations in 2D (or 3D) space
5. Choose the highest-scoring (device) configuration

Agent gradually develops understanding how to ensure SLOs

41
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2 – Knowledge Exchange

Extend from single devices to the CC

Heterogeneity among the Edge
● Impedes simple transfer learning of models
● Low model accuracy → high surprise

● Requires a cluster leader (fog node or edge)
● EOSC models collected at a leader node
● Model selection according to hardware char.
● Merging models to provide tailor-fit one

Fast onboarding (= horizontal scaling) of devices

42



3 – Collaborative Scaling

Limited action scope of devices
● Individual devices restricted to local scope to resolve SLO violations 

● Leader node collecting environmental metrics (e.g., network congestion)
● Incorporated to causal model, contrasted against local SLO fulfilment (AIF)
● Emerging structures allows optimizing cluster-wide SLO fulfilment 

○ E.g., redistribute clients between impacted devices

43



Evaluation - Overview

• Use Case
Distributed video processing architecture where 
streams are transformed on edge devices to 
preserve privacy of individuals.

• Implementation
Prototype including video transformations and the 
collaborative edge intelligence framework.

• Evaluation Scope
Targeting each contribution with different aspects.

44[5] Sedlak, B., Murturi, I., Donta, P.K., Dustdar, S.: A Privacy Enforcing Framework for Transforming Data Streams on the Edge. IEEE Emerging Topics in Computing (2023)

[5]



Evaluation - Use Case

BNL comprises metrics from various sources (e.g., IoT client or edge device); 
Extended with target conditions (i.e., SLOs) to create the EOSC model:

Model training takes 11 (3) metrics  SLOs from model variables

45

Parameters allow configuring
a component’s environment



Evaluation - Implementation

Python prototype for which we provide:

● Github repository1

● Docker container2

Evaluation included a variety of edge devices:

Devices combined within a cluster and classified relatively to each other

46

https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/

1https://github.com/borissedlak/workload/tree/main/FGCS
2https://hub.docker.com/repository/docker/basta55/workload/

https://github.com/borissedlak/workload/tree/main/FGCS
https://hub.docker.com/repository/docker/basta55/workload/
https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://github.com/borissedlak/workload/tree/main/FGCS
https://hub.docker.com/repository/docker/basta55/workload/


Evaluation - Aspects

We motivated, evaluated, and provided the results for 13 aspects:

A-1: Do MBs reduce the complexity of inference?
A-2: What is AIF’s operational overhead?
A-3: How long require AIF agents to ensure SLOs?
A-4-1: Are the produced Bayesian networks interpretable?
A-4-2: Is the behaviour of AIF agents explainable?
A-5: What is the operational impact of including BNL in the AIF cycle?
A-6: Can changes in variable distribution be handled?
A-7: Can SLOs be modified during runtime?

K-1: What is the SLO fulfilment rate of transferred models?
K-2: Can knowledge transfer achieve any speedup?
K-3: Do tailored models have lover surprise compared to existing models?

S-1: How is the load distributed among resource-constrained devices?
S-2: Can intelligent CC structures optimize local SLO fulfilment?

47

Sedlak et al.. (2023). Equilibrium in the Computing Continuum through Active Inference. arXiv e-prints, arXiv-2311.
https://arxiv.org/abs/2311.16769

https://arxiv.org/abs/2311.16769


Evaluation - Aspects (Filtered)

We motivated, evaluated, and provided the results for 13 aspects:

A-1: Do MBs reduce the complexity of inference?
A-2: What is AIF’s operational overhead?
A-3: How long require AIF agents to ensure SLOs?
A-4-1: Are the produced Bayesian networks interpretable?
A-4-2: Is the behaviour of AIF agents explainable?
A-5: What is the operational impact of including BNL in the AIF cycle?
A-6: Can changes in variable distribution be handled?
A-7: Can SLOs be modified during runtime?

K-1: What is the SLO fulfilment rate of transferred models?
K-2: Can knowledge transfer achieve any speedup?
K-3: Do tailored models have lover surprise compared to existing models?

S-1: How is the load distributed among resource-constrained devices?
S-2: Can intelligent CC structures optimize local SLO fulfilment?

48



A-1: Do MBs reduce the complexity of inference?

• Setup
Modify the AIF agent to calculate behavior 
factors (i.e., surprise, etc) for a reduced 
number of SLOs with or without MB

• Result
Applying MBs reduced the median inference 
time of 4 SLOs from 197ms to 151ms

• Implication
MB provided a decreased system view

49



A-4-1: Are the produced Bayesian networks interpretable?

• Setup
Train the EOSC model from scratch 
and extract the BN after X rounds

• Result
Dependencies gradually revealed:

501 AIF round 3 AIF rounds                           5 AIF rounds                     10 AIF rounds

• Implication
AIF can be used to identify causal 
relations according to current and 
upcoming observations. Results are 
intuitively comprehensible.



A-4-2: Is the behavior of AIF agents explainable?

● Setup
Train the EOSC model from 
scratch and extract the agent’s 
behavioral factors after X rounds

● Result
Develops clear preferences

● Implication
Allows to empirically debug the 
behavior and fine-tune agent by 
adjusting hyperparameters

51

PV RA IG



K-3: Do tailored models have lover surprise compared to existing models?

● Setup
Federate EOSC models within the 
cluster, select and combine models for 
joining edge device; track retraining.

● Result
Tailor-made model reported the 
lowest surprise, although remaining 
models improved through retraining.

● Implication
Surprise can be decreased by choosing 
a (best-)fitting device model .

52



S-2: Can intelligent CC structures optimize local SLO fulfillment?

53

● Setup
Clients distributed equally between 
comparable devices, introducing network 
congestion for one of them; rebalance load.

● Result
Cluster-wide SLO fulfillment (Σ) improved 
from 1.03 to 1.53.

● Implication
Was able to raise the scope of elasticity 
strategies, but requires sufficient data to 
model the relation of congestion → slo_rate.



Summary

54

● Human Eco-systems’ intelligent bring Distributed Continuum 
systems more intelligent and adaptable. 
● Specially Self-healing
● Higher QoS and QoE
● Self-adaption

● Active Inference as key method for self-adaptation
○ Autonomous EOSC model training and updating
○ Fulfill SLOs through continuous reconfiguration



Future plans

● Pending comparison with other (ML) approaches
○ Evaluation of more complex use cases

● Composition of MBs for larger structures (DeepSLOs)
○ Constrain one MB depending on another’s SLOs

55
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Thank you

Dr. Praveen Kumar Donta
Distributed Systems Group
TU Wien, Vienna, Austria

( pdonta@dsg.tuwien.ac.at )
https://dsg.tuwien.ac.at/team/pdonta/

mailto:pdonta@dsg.tuwien.ac.at
https://dsg.tuwien.ac.at/team/pdonta/
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