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Large language models in non-text domains
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Large language models in non-text domains
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What is a large language model?
A technical view (refined)

What is a token?

e character

token 1 « word
token -
predictor] _next e
token  part of a word
token n  byte pair encoding (BPE)

* amino acid types

What is a token in case of processes?

18



Agenda

1. Large Language Models
2. Process Models
3. Large Process Models

O
d f k Deutsches
Forschungszentrum
@ fiir Kiinstliche
Intelligenz
German Research

Center for Artificial
Intelligence

©® UNIVERSITAT
““"uu"“" DES

SAARLANDES

HUMBOLDT- .0 4
UNIVERSITAT i
ZU BERLIN

19



ready
to bake

bake

bake|

What is a process model?
A small bakery process

20



What is a process model?
A small bakery process

bake supply to aide
ready
to aide
aide i
free




What is a process model?
A small bakery process

bake supply to aide move to shop
ready
to aide
' move to
ree shop




What is a process model?
A small bakery process

bake supply to aide move to shop sell
ready
bake @ supply sell %
to aide
aide
free

move to
shop

23



What is a process model?
A small bakery process

bake supply to aide
d
bake @ @ supply
to aide
four steps
. . f
describe behavior s

move to
shop

sell

24



bake |

d
bake
four steps

describe behavior

What is a process model?

supply to aide

supply
to aide
aide
free

A small bakery process

move to shop

move to
shop

ready
to bake

bake

supply
to aide

bakery run

b

aide
busy

move to
shop

sell

ready
to bake

sell

©

composed steps

bakery run:

bake ¢ supply to aide
e move to shop ¢ sell

25



A little bit larger
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Larger bakery processes

bakery run = def
(1)-bakery runs =4
(2)-bakery runs =4

(3)-bakery runs =4

(n+1)-bakery runs =,

bake e supply to aide ® move to shop e sell
bakery run
(1)-bakery runs e bakery run

(2)-bakery runs e bakery run

(n)-bakery runs e bakery run

31



Larger bakery processes

bakery run = def
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A more realistic large process: order fulfillment
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The composition calculus deals with the three challenges
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Commercial b

Peter Fettke - Wolfgang Reisig
Understanding the Digital World

Modeling with Herakur

This book fills a serious gap by providing a conceptual framework for understanding
the digital world. This world contains large, heterogeneous systems that have to
manage dynamic behavior as well as static items and data. Obviously, new, digital
methods are needed to deal with the challenges of the digital world.

This book introduces such a method with HERAKLIT, an intuitively simple, albeit
powerful framework for modeling, communicating, and analyzing computer-
integrated systems. It integrates proven methods for composing modules, describing
behavior with local cause and effect, and digitally representing real- and imagined-
world items, resulting in a comprehensive, expressive, concerted, technically simple,
digital modeling method.

This book is structured according to three HERAKLIT pillars, starting in Part I
with the central HERAKLIT concept of modules, in particular their composition
and refinement. Part II covers the second pillar of HERAKLIT, dynamics, focusing
on modules that describe aspects of behavior. Part III focuses on static aspects. In
particular, real- and imagined-world items and their symbolic representation are
carefully distinguished and related. Together, these three pillars are consolidated
in Part IV, integrating all concepts into a powerful formal framework. The book
concludes in Part V with a more comprehensive case study of a typical retail business,
recommendations on how to start modeling with HERAKLIT, and useful graphical
conventions for the graphical representation of HERAKLIT models.

HERAKLIT covers the range from the first informal structuring ideas for a computer-
integrated system, through the specification of (business) processes, the contributions
of people, organizations, and mechanical devices, up to the construction of software.
The book is therefore written for students in areas related to system modeling,
system design, and system engineering, as well as for professionals in these fields.

ISBN 978-3-031-61897-0
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783031/618970
» springer.com
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Idea for a large process model

idea of a large language model is applied in the context of business process management

three approaches:
(1) fined-tuned large language model
(2) large language model agent

(3) native large language model
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(1) Large process model as a fine-tuned large language model
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(1) Large process model as a fine-tuned large language model.:
example

Enterprise Modelling and Information Systems Architectures

Conceptual Modeling and Large Language Models:
Impressions From First Experiments With ChatGPT

Hans-Georg Fill**, Peter Fettke®, Julius Kopke®

* Untversity of Fribourg, Switzerland

® Saarland Untversity and German Research Center for Artificial Intelligence (DFKI), Germany

© Untversity of Klagenfurt, Austria

1 Motivation

Since OpenAl publicly released ChatGPT in
November 2022, many ideas have emerged as to
which applications this type of technology could
support. At its core, ChatGPT is a conversa-
tional artificial intelligence, meaning that it can
engage ina dialogue to respond to user input given
in natural language (Campbell 2020). Although
such ty pes of systems have been well-known since
Weizenbaum’s Eliza program (Weizenbaum 1966)
and are today widely deployed in practice under
the popular term chatbots, ChatGPT has a partic-
ular set of properties that contributed to its wide
reception and the recent hype surrounding it.

In contrast to previous chatbots, ChatGPT does
not retrieve responses from a knowledge base,
which has been pre-defined by some human user.
Rather, it is based on a pre-trained generative lan-
guage model, which creates responses based on
patterns that the user supplies as input. Thereby,
alanguage model basically assigns probabilities
to every word in a vocabulary that can follow a
given input sequence. Such word embeddings are
trained using artificial neural networks to learn
a probability distribution from given texts in an
unsupervised fashion, i. e. such that no additional
human input or labeling is required. The gener-
ation of the output sequence thereby considers
the tokens of the input sequence and their posi-
tion as well as the previously generated output,
# Corresponding author.

E-muall. hans-georg.fill @unifrch
! https: fopenal.comMlog/chatgpt

which is thus denoted as an autoregressive genera-
tion (Jurafsky and Martin 2023). For the training
of these probability distributions for the positional
word embeddings, large sets of training data are
required. In the case of the GPT-3 model, which
underlies ChatGPT, this amounted to 175 billion
parameters (Brown et al. 2020). For efficiently
handling such large parameter sets, several inno-
vations such as the architecture of transformer
models (Vaswani et al. 2017) were necessary.

What seems to make ChatGPT however outper-
form large language model (LLM) based programs
that had been released to the public previously, is
its ability to reduce toxic outputs, i. e. harmful or
biased results. This has been achieved through
the approach of InstructGPT (Ouyang et al. 2022),
which uses reinforcement learning from human
feedback to train a reward model. This reward
model is then in turn used to fine-tune the output
generated by the GPT-3 and GPT4 language mod-
els. Thus, the training of the reward model only
requires rather limited resources compared to the
size of the language model.

From the multitude of areas in which the ap-
plication of ChatGPT is currently discussed, the
following shall serve as non-exhaustive examples,
which have already appeared in academic outlets:
In the medical domain, ChatGPT has been consid-
ered for writing patient clinic letters by giving it
instructions for following specific directions, using
national guidelines and data from these guidelines
in order to derive clinical advice (Ali etal. 2023);
in the legal domain, ChatGPT has been asked to
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(1) Large process model as a fine-tuned large language model.:
example

Task Definition 5

Lighting and ventilation of a bathroom: If
the light is switched on when the fan is
stationary, the fan also starts after a while.
Then, when the light is turned off, the fan
continues to run for some time. If the light
is turned on first and then turned off quickly
when the fan is stationary, the fan will not
start at all. If the light is first switched
off and then quickly switched on again when
the fan is running, the fan continues to run
without interruption.
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(1) Large process model as a fine-tuned large language model.:

example

light
switched on

fan
stationary

light

fan starts
after a while

light

switched off

light quickly

fan continues
for some time

light

switched off

switched on

fan continues
without
interruption

switched on

light

switched on

light quickly

switched off

fan

\

stationary

fan not started

\

light
switched on

light

switched off

fan

Source: Fill, Fettke, Kopke (2023)
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(1) Large process model as a fine-tuned large language model

_ model
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description model description
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(2) Large process model as a large process model agent
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(2) Large process model as a large process model agent
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(2) Large process model as a large process model agent:
example

A WebShop search

Instruction:
i'm looking for a small portable folding desk that is
already fully assembled; it should have a khaki
wood finish, and price lower than 140.00 dollars

VN

portable folding desk Khlaki wood ( )
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Source: Yao et al.: WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents. arXiv:2207.01206, 2023.



(2) Large process model as a large process model agent:
example

A WebShop search

Instruction:
i'm looking for a small portable folding desk that is
already fully assembled; it should have a khaki
wood finish, and price lower than 140.00 dollars

portable folding desk khaki wood { 1 )
D

v results
Page 1 (Total results: 50)

w ‘g B09Q3B186B

,» .*l__! MENHG Folding Breakfast Tray Table,
& \f/\(v Efficient Home Laptop Notebook Computer
g -

Desk, Portable Writing Study Desk, Sturdy
t i Home Office Table Workstation —

< . s090

BO9PSZBCWR

KPSP Folding Study Desk Bed Breakfast
Serving Tray Table Efficient Home Laptop
Notebook Computer Desk Portable

Standing Desk for Small Space Bedroom
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Source: Yao et al.: WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents. arXiv:2207.01206, 2023.



(2) Large process model as a large process model agent:
example

Description:Produc = - ° & [Large Siz s -
A we bShop search laptop desk.ProdUL_J_"t.e_.I!!':_g?e tail styling with light w';:_te.m:detall
walnut.Product weight: Holds laptops up to 17 inches. It also
4.6pounds.Material: high quality thick have spacious space (23.6x15.7x11
Instruction: steel pipe, black brushed sheet.Special inches) for your laptop, notebook,
i'm looking for a small portable folding desk that is ||| design: black brushed smooth table top, mouse, pen and coffee. Its generous
already fully assembled; it should have a khaki increase the length and width of the size gives this versatile desk even
wood finish, and price lower than 140.00 dollars ||| 1. 1is possible to place the computer more flexibility.
S : and various items.Function: Can be used TRE——
A - > as computer desk, dining table, bedside ° B8 I
portable folding desk khaki wood ( 1 ) B e saabprn ot fordable lap desk can be used as a
= R 4 -
v @ results BeJ WENHG Folding Labtop Table Bed Desk item
= PC Lap Desk with,brawer Book Stand

Page 1 (Total results: 50) & S
’» F ‘-f/'& Reading Holder Leg Space Laptop Bed
~. Trdy Foldable Lafy Table Breakfast

L
B09Q3B186B \/ S,’ P
MENHG Folding Breakfast Tray Table, o ' Desk Sofa Small Desk for Small Space

=
»- A=
< \% Efficient Home Laptop Notebook Computer

Price: $100.0 ’

Desk, Portable Writing Study Desk, Sturdy @ Rating: NA. y

? Home Office Table Workstation > y T .

L ~ P Description| Overview

BO9PSZBCWR @ @
KPSP Folding Study Desk Bed Breakfast COlor
Serving Tray Table Efficient Home Laptop
Notebook Computer Desk Portable black ‘ khaki ‘ white 3
Standing Desk for Small Space Bedroom | —
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Source: Yao et al.: WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents. arXiv:2207.01206, 2023.
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walnut.Product weight: Holds laptops up to 17 inches. It also
. 4.6pounds.Material: high quality thick have spacious space (23.6x15.7x11
Instruction: steel pipe, black brushed sheet.Special inches) for your laptop, notebook,
i'm looking for a small portable folding desk that is ||| design: black brushed smooth table top, mouse, pen and coffee. Its generous
already fully assembled; it should have a khaki increase the length and width of the size gives this versatile desk even
wood finish, and price lower than 140.00 dollars ||| 120! tis possible to place the computer more flexibility.
_— and various items.Function: Can be used
: : | ¢ as computer desk, dining table, bedside ° 2808 [Wwide Application] Our
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e
= A :
B v results BeJ WENHG Folding Labtop Table Bed Desk item
Page 1 (Total results: 50) & \ p‘C Lap Desk with,brawer Book Stand
< /N Reading Holder Leg Space Laptop Bed
I \/‘?f{"._ ~. Trdy Foldable Lafy Table Breakfast
MENHG Folding Breakfast Tray Table, o A Desk Sofa Sma}l Desk for Small Space
Efficient Home Laptop Notebook Computer ‘ Price: $100.0 ;
Desk, Portable Writing Study Desk, Sturdy >” ' Rating: NA.
Home Office Table Workstation ¥ N e .
$109.0 k Descnptlon Overview Buy Now
BO9PSZBCWR q ) ‘ ) @ ‘fZJ,\’,
KPSP Folding Study Desk Bed Breakfast : "
Serving Tray Table Efficient Home Laptop Color . Reward' ]
Notebook Computer Desk Portable black ‘ khaki ‘ white 3 ' 1.0 !
Standing Desk for Small Space Bedroom | — Ry
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4.6pounds.Material: high quality thick have spacious space (23.6x15.7x11
Instruction: steel pipe, black brushed sheet.Special inches) for your laptop, notebook,
i'm looking for a small portable folding desk that is ||| design: black brushed smooth table top, mouse, pen and coffee. Its generous
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wood finish, and price lower than 140.00 dollars ||| 1a'e: itis possible to place the computer more flexibility.
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. : as computer desk, dining table, bedside ° B8 I
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e

—R 4

WMENHG Folding Laptop Table Bed Desk item
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Trdy Foldable Laly Table Breakfast

Desk Sofa Smal} Desk for Small Space

Price: $400.0 ’

v @ results

Page 1 (Total results: 50)

B09Q3B186B

MENHG Folding Breakfast Tray Table,
Efficient Home Laptop Notebook Computer | B
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................ HTML mode _ .
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(2) Large process model as a large process model agent:
Evaluation benchmarks

Web

Browsing g

e
(On the official website of an airline) = |
Book the cheapest flight from Beijing to Los

Angeles in the last week of July.
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Source: Liu et al.: AgentBench: Evaluating LLMs as agents. arXiv:2308.03688, 2023,
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Evaluation benchmarks

Al
|
0
House
Holding
(In the middle of a kitchen in a simulator)
Please put a pan on the dinning table. R —
(On the official website of an airline) =T
Book the cheapest flight from Beijing to Los Wep o e |
Angeles in the last week of July. Browsing I—H
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Source: Liu et al.: AgentBench: Evaluating LLMs as agents. arXiv:2308.03688, 2023,



Real-world Challenges

(On an Ubuntu bash terminal)
Recursively set all files in the directory to
read-only, except those of mine.

(Given Freebase APIs)
What musical instruments do Minnesota-
born Nobel Prize winners play?

—

(Given MySQL APIs and existed tables)
LGrade students over 60 as PASS in the table.

.

(On the GUI of Aquawar)
This is a two-player battle game, you are a
player with four pet fish cards ......

=

A man walked into a restaurant, ordered a bow!/
of turtle soup, and after finishing it, he
committed suicide. Why did he do that?

(In the middle of a kitchen in a simulator)
Please put a pan on the dinning table.

=

(On the official website of an airline)
Book the cheapest flight from Beijing to Los
Angeles in the last week of July.

o

Source: Liu et al.: AgentBench: Evaluating LLMs as agents. arXiv:2308.03688, 2023,

(2) Large process model as a large process model agent:
Evaluation benchmarks

8 Distinct Environments

agentbench@ubuntu: ~ X1
agen $
agen @ubuntu:~$ 1s
da
agen @ 2cho "Hi!"
i
agentbench@ $
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Digital Card
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3
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Lateral Think
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House
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W — ®
= g ||
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Real-world Challenges

(On an Ubuntu bash terminal)
Recursively set all files in the directory to
read-only, except those of mine.

1
(Given Freebase APIs) gpt-4 {=== " 4.01
What musical instruments do Minnesota- C'i?:fc'é  — -
born Nobel Prize winners play? gpt-3.5-turbo 1 . 2.32
- - text-davinci-003 i Lol
(Given MySQL APIs and existed tables) claude-instant 1 1.60
Grade students over 60 as PASS in the table. chat-bison-001 1, 1.39
- text-davinci-002 - 0 L.25
(On the GUI of Aquawar) codellama-34b 10,96
This is a two-player battle game, you are a ll‘;'ﬁgfg:%gg Iy, ‘;'893
player with four pet fish cards ...... llama-2-13b - T e
P 0SS LLMs
A man walked into a restaurant, ordered a bow! dolly-12b1-0.1 4
of turtle soup, and after finishing it, he chatgim-6b .0.11!
committed suicide. Why did he do that? oasst-12b 70.03 !
1Avg:0.51
1 2 3 4

(In the middle of a kitchen in a simulator) , 0
Please put a pan on the dinning table.

(On the official website of an airline)
Book the cheapest flight from Beijing to Los
Angeles in the last week of July.

Source: Liu et al.: AgentBench: Evaluating LLMs as agents. arXiv:2308.03688, 2023,

AgentBench Overall Score

(2) Large process model as a large process model agent:
Evaluation benchmarks

8 Distinct Environments

®

Operating
System

© agentbench@ubuntu: ~ X1

ubuntu:~$ touch data.txt
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Graph

I\

House
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Web

Shopping om

Web

Browsing g
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(3) Large process model as a native large language model

large process model| NeXtstep

event
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running
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(3) Large process model as a native large language model
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Article history: Predicting business process behaviour is an important aspect of business process management. Motivated
Received 8 July 2016 by research in natural language processing, this paper describes an application of deep learning with recur-
Received in revised form 22 March 2017 rent neural networks to the problem of predicting the next event in a business process. This is both a novel
Accepted 5 April 2017 method in process prediction, which has largely relied on explicit process models, and also a novel applica-
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tion of deep learning methods. The approach is evaluated on two real datasets and our results surpass the

state-of-the-art in prediction precision.
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1. Introduction

Being able to predict the future behaviour of a business process
is an important business capability [1]. As an application of predic-
tive analytics in business process management, process prediction
exploits data on past process instances to make predictions about
current ones [2]. Example use cases are customer service agents
responding to inquiries about the remaining time until a case is
resolved, production managers predicting the completion time of
a production process for better planning and higher utilization, or
case managers identifying likely compliance violations to mitigate
business risk.

‘We present a novel approach to predicting the next process
event using deep learning. While the term “deep learning” has only
recently become a popular research topic, it is essentially an appli-
cation of neural networks and thus looks back on a long history
of research [3]. Recent innovations both in algorithms, allowing
novel architectures of neural networks, and computing hardware,
especially GPU processing, have led to a resurgence in interest for
neural networks and popularized the term “deep learning” [4]. Our
approach is motivated by applications of neural networks to natu-
ral language processing(NLP), more specifically the prediction of the
next word in a sentence [5-7]. By interpreting process event logs

* Corresponding author.
E-mail address: jevermann@mun.ca (J. Evermann).

http://dx.doi.org/10.1016.dss.2017.04.003
0167-9236/© 2017 Elsevier B.V. All rights reserved.

as text, process traces as sentences, and process events as words,
these techniques can be applied to predict future process events. The
contribution of our research is threefold:

1. We improve on the state-of-the-art in process event predic-
tion. Our results show our method has considerably better
precision on next-event prediction.

2. We demonstrate that an explicit process model is not neces-

sary for prediction. Deep learning models, where the process

structure is only implicitly reflected, can perform as well as
explicit process models.

We contribute to process management in general by showcas-

ing the useful application of an artificial intelligence approach,

illustrating that business process management can benefit
from the application of smart approaches.

w

Our research is located at the intersection of business process
management, in particular process mining, and artificial intelligence
(AI) and machine learning. We bring together historic process data
with an Al learning technology to leverage real-time case manage-
ment, opening new perspectives into process execution, monitoring,
and analysis. Extending existing solutions to novel problems (“exap-
tation”) is a recognized and valid way to make a contribution in
design science [8], which is the research approach we apply here. We
not only provide a new approach, rooted in Al to predicting the next
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1. Introduction

Being able to predict the future behaviour of a business process
is an important business capability [1]. As an application of predic-
tive analytics in business process management, process prediction
exploits data on past process instances to make predictions about
current ones [2]. Example use cases are customer service agents
responding to inquiries about the remaining time until a case is
resolved, production managers predicting the completion time of
a production process for better planning and higher utilization, or
case managers identifying likely compliance violations to mitigate
business risk.

‘We present a novel approach to predicting the next process
event using deep learning. While the term “deep learning” has only
recently become a popular research topic, it is essentially an appli-
cation of neural networks and thus looks back on a long history
of research [3]. Recent innovations both in algorithms, allowing
novel architectures of neural networks, and computing hardware,
especially GPU processing, have led to a resurgence in interest for
neural networks and popularized the term “deep learning” [4]. Our
approach is motivated by applications of neural networks to natu-
ral language processing(NLP), more specifically the prediction of the
next word in a sentence [5-7]. By interpreting process event logs
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as text, process traces as sentences, and process events as words,
these techniques can be applied to predict future process events. The
contribution of our research is threefold:

1. We improve on the state-of-the-art in process event predic-
tion. Our results show our method has considerably better
precision on next-event prediction.

2. We demonstrate that an explicit process model is not neces-

sary for prediction. Deep learning models, where the process

structure is only implicitly reflected, can perform as well as
explicit process models.

We contribute to process management in general by showcas-

ing the useful application of an artificial intelligence approach,

illustrating that business process management can benefit
from the application of smart approaches.

w

Our research is located at the intersection of business process
management, in particular process mining, and artificial intelligence
(AI) and machine learning. We bring together historic process data
with an Al learning technology to leverage real-time case manage-
ment, opening new perspectives into process execution, monitoring,
and analysis. Extending existing solutions to novel problems (“exap-
tation”) is a recognized and valid way to make a contribution in
design science [8], which is the research approach we apply here. We
not only provide a new approach, rooted in Al to predicting the next
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Abstract

Process mining enables the reconstruction and evaluation of business processes based on
digital traces in IT systems. An increasingly important technique in this context is pro-
cess prediction. Given a sequence of events of an ongoing trace, process prediction allows
forecasting upcoming events or performance measurements. In recent years, multiple pro-
cess prediction approaches have been proposed, applying different data processing schemes
and prediction algorithms. This study focuses on deep learning algorithms since they seem
to outperform their machine learning alternatives consistently. Whilst having a common
learning algorithm, they use different data preprocessing techniques, implement a vari-
ety of network topologies and focus on various goals such as outcome prediction, time
prediction or control-flow prediction. Additionally, the set of log-data, evaluation metrics
and baselines used by the authors diverge, making the results hard to compare. This paper
attempts to synthesise the advantages and disadvantages of the procedural decisions in
these approaches by conducting a systematic literature review.

Keywords Process prediction - Predictive process monitoring - Systematic literature
review - Deep learning

1 Introduction

Today’s information systems create, utilize and store vast amounts of data about the
business processes being executed with them. These logs capture the as-is execution.
Process mining extracts knowledge from these logs to provide means for process dis-
covery, process monitoring and process improvement. Additionally, in case target pro-
cess models are provided, conformance-checking searches for deviations of this model.
Consequently, process mining is situated between the disciplines of data mining and
business process modelling (Van der Aalst et al. 2011). In recent years, much effort was
put into process discovery to build human-readable models for further investigation by
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1. Introduction

Being able to predict the future behaviour of a business process
is an important business capability [1]. As an application of predic-
tive analytics in business process management, process prediction
exploits data on past process instances to make predictions about
current ones [2]. Example use cases are customer service agents
responding to inquiries about the remaining time until a case is
resolved, production managers predicting the completion time of
a production process for better planning and higher utilization, or
case managers identifying likely compliance violations to mitigate
business risk.

‘We present a novel approach to predicting the next process
event using deep learning. While the term “deep learning” has only
recently become a popular research topic, it is essentially an appli-
cation of neural networks and thus looks back on a long history
of research [3]. Recent innovations both in algorithms, allowing
novel architectures of neural networks, and computing hardware,
especially GPU processing, have led to a resurgence in interest for
neural networks and popularized the term “deep learning” [4]. Our
approach is motivated by applications of neural networks to natu-
ral language processing(NLP), more specifically the prediction of the
next word in a sentence [5-7]. By interpreting process event logs
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as text, process traces as sentences, and process events as words,
these techniques can be applied to predict future process events. The
contribution of our research is threefold:

1. We improve on the state-of-the-art in process event predic-
tion. Our results show our method has considerably better
precision on next-event prediction.

2. We demonstrate that an explicit process model is not neces-

sary for prediction. Deep learning models, where the process

structure is only implicitly reflected, can perform as well as
explicit process models.

‘We contribute to process management in general by showcas-

ing the useful application of an artificial intelligence approach,

illustrating that business process management can benefit
from the application of smart approaches.
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Our research is located at the intersection of business process
management, in particular process mining, and artificial intelligence
(AI) and machine learning. We bring together historic process data
with an Al learning technology to leverage real-time case manage-
ment, opening new perspectives into process execution, monitoring,
and analysis. Extending existing solutions to novel problems (“exap-
tation”) is a recognized and valid way to make a contribution in
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forecasting upcoming events or performance measurements. In recent years, multiple pro-
cess prediction approaches have been proposed, applying different data processing schemes
and prediction algorithms. This study focuses on deep learning algorithms since they seem
to outperform their machine learning alternatives consistently. Whilst having a common
learning algorithm, they use different data preprocessing techniques, implement a vari-
ety of network topologies and focus on various goals such as outcome prediction, time
prediction or control-flow prediction. Additionally, the set of log-data, evaluation metrics
and baselines used by the authors diverge, making the results hard to compare. This paper
attempts to synthesise the advantages and disadvantages of the procedural decisions in
these approaches by conducting a systematic literature review.
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1 Introduction

Today’s information systems create, utilize and store vast amounts of data about the
business processes being executed with them. These logs capture the as-is execution.
Process mining extracts knowledge from these logs to provide means for process dis-
covery, process monitoring and process improvement. Additionally, in case target pro-
cess models are provided, conformance-checking searches for deviations of this model.
Consequently, process mining is situated between the disciplines of data mining and
business process modelling (Van der Aalst et al. 2011). In recent years, much effort was
put into process discovery to build human-readable models for further investigation by
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Abstract. We present PGTNet, an approach that transforms event logs
into graph datasets and leverages graph-oriented data for training Pro-
cess Graph Transformer Networks to predict the remaining time of busi-
ness process i PGTNet consistently outperforms state-of-the-art
deep learning approaches across a diverse range of 20 publicly available
real-world event logs. Notably, our approach is most promising for highly
complex processes, where existing deep learning approaches encounter
difficulties stemming from their limited ability to learn control-flow rela-
tionships among process activities and capture long-range dependencies.
PGTNet addresses these challenges, while also being able to consider
multiple process perspectives during the learning process.

Keywords: Predictive process monitoring - Remaining time prediction
- Deep learning - Graph Transformers.

1 Introduction

Predictive process monitoring (PPM) aims to forecast the future behaviour of
running business process instances, thereby enabling organizations to optimize
their resource allocation and planning [17], as well as take corrective actions [7].
An important task in PPM is remaining time prediction, which strives to accu-
rately predict the time until an active process instance will be completed. Precise
estimations for remaining time are crucial for avoiding deadline violations, opti-
mizing operational efficiency, and providing estimates to customers [13,17].

A variety of approaches have been developed to tackle remaining time predic-
tion, with recent works primarily being based on deep learning architectures. In
this regard, approaches using deep neural networks are among the most promi-
nent ones [15]. However, the predictive accuracy of these networks leaves consid-
erable room for improvement. In particular, they face challenges when it comes
to capturing long-range dependencies [2] and other control-flow relationships
(such as loops and parallelism) between process activities [22], whereas they
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1. Introduction as

Being able to predict the future behaviour of a business process [
is an important business capability [1]. As an application of predic-
tive analytics in business process management, process prediction
exploits data on past process instances to make predictions about
current ones [2]. Example use cases are customer service agents
responding to inquiries about the remaining time until a case is
resolved, production managers predicting the completion time of
a production process for better planning and higher utilization, or
case managers identifying likely compliance violations to mitigate
business risk.

‘We present a novel approach to predicting the next process
event using deep learning. While the term “deep learning” has only
recently become a popular research topic, it is essentially an appli-
cation of neural networks and thus looks back on a long history
of research [3]. Recent innovations both in algorithms, allowing
novel architectures of neural networks, and computing hardware,
especially GPU processing, have led to a resurgence in interest for
neural networks and popularized the term “deep learning” [4]. Our m
approach is motivated by applications of neural networks to natu- (]
ral language processing(NLP), more specifically the prediction of the w
next word in a sentence [5-7]. By interpreting process event logs m
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Table 2. Mean Absolute Error for remaining time prediction (MAE: in days).

Event log

DUMMY

DALSTM

Process
Transformer

GGNN

PGTNet

5.21
9.15
9.03
9.16
8.92
9.17
8.39
8.17
27.20
4.33
41.12
59.41
50.22
83.11
28.76
56.75
45.97
16.18
152.93
196.26

Env.permit
Helpdesk
BPIC12
BPIC12W
BPIC12C
BPIC12CW
BPIC120
BPIC12A
BPIC201
BPIC20D
Sepsis
Hospital
BPIC15-1
BPIC15-2
BPIC15-3
BPIC15-4
BPIC15-5
BPIC13I
BPIC13C
Traffic fines

3.36t
8.22+
9.34+
8.22+
8.21+
8.04+
8.21+
7.62+
20.43+
4.15+
25.21+
43.66+
36.48+
63.66+
17.69+
53.33+
42.89+
7.60x
91.82+
187.41+

0.04
0.23
0.41
0.06
0.27
0.09
0.09
0.03
0.39
0.12
0.66
0.10
2.69
2.36
1.16
2.63
3.08
0.45
1.48
0.53

4.26+ 0.04
6.33+ 0.01
7.11+ 0.02
7.40% 0.01
6.86L 0.01
7.46% 0.01
7.29+ 0.01
7.79+ 0.01
17.06L 0.11
3.65+ 0.01
34.77+ 0.18
47.00£ 0.07
31.01+ 0.36
44.04+ 0.48
15.23+ 0.23
34.40+ 0.42
27.76x 0.28
13.54+ 0.04

3.52+
6.21+
4.78+
5.12+
5.32+
6.99+
6.93+
7.48+
15.67%
3.25+
19.44+
41.84+
16.77x
20.76+
7.06+
1797+
13.61+
11.99+

127.01+ 0.85 123.28+
187.08+ 0.11 154.56+ 0.19 113.53+

0.02
0.04
0.01
0.02
0.01
0.01
0.04
0.01
0.04
0.01
0.05
0.06
0.01
0.05
0.03
0.03
0.08
0.04
0.53

2.724+
4.11+
2.31+
2.70+
2.77+
5.07+
5.57+
7.38+
7.67+L
3.10+
16.48+
35.68+
1.76+
3.02+
1.54+
1.65+
1.61+
2.23+
37.44+

0.08
0.04
0.19
0.01
0.02
0.03
0.01
0.01
0.19
0.01
0.19
0.03
0.06
0.07
0.23
0.06
0.01
0.05
1.49
0.12

Average 41.47

32.78+

0.84

31.85+ 0.16 24.63+ 0.06 12.924
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Central theorem (based on [Fettke / Reisig 2024])

Each finite process R can be composedas R=P; e ... e P_from steps Py, ..., P,,.

Steps P4, ..., P, can be interpreted as tokens (“the vocabulary of a system”) and
conventional methods for large language models can be employed.
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Conclusions

(A) large language models evolve into a foundational technology
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Conclusions

(A) large language models evolve into a foundational technology

(B) three approaches for large process models:
(1) fine-tuned large language models
(2) large language model agents
(3) native large process models
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Conclusions

(A) large language models evolve into a foundational technology

(B) three approaches for large process models:
(1) fine-tuned large language models
(2) large language model agents
(3) native large process models

(C) composition calculus is the theoretical foundation for large process models
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