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The
explosion of opportunities
for software-driven innovations

comes with an

iImplosion of human opportunities and capabilities

to understand and control these innovations.



Example — Individual Fairness

Black Box




Example — Software Doping
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Contag et al.: How They Did It: An Analysis of Emission Defeat Devices in Modern Automobiles. SP 2017.
Domke and Lange: The exhaust emissions scandal ("Diesel-gate"). Chaos Communication Congress 2015.

Emission Cleaning by Volkswagen
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Emission Cleaning by Others
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NEDC vs. NEDC' {oes

d|n(i1, Iz) - ‘Il — |2‘ dOut(01302) — ‘01 — 09 R = 1o km/h Ko = 180 mg/km
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Software Cleanness — a general expectatioh/

A software is doped if and only if it is not clean.

Our cleanness mantra is: Stmilar inputs lead to similar outputs.



Robust Cleanness ()

P :In¥ — Out”

distance function for inputs, (In* x In*) — Rxg k S
( Is distance function for outputs, (Out® x Out®) — R deterministic
Contract C = (Stdln d|n,dout,lﬁz,zo i — NEDC i Stdin
standard mputs k threshold for output distance ! £ NEDC i ¢ Stdin

Stdin C In“  e.q., Stdin — (NEDC)} threshold for input distance




Robust Cleanness [

P :In — Out
distance function for inputs, (In x In) — Rxg - deterministic
( Is distance function for outputs, (Out x Out) — Rxq
Contract € = (Stdln, dj,, dout, ki, Ko) - StdlIn
standard inputs _} kt threshold for output distance /< In

Stdin C In threshold for input distance




sequential

Robust Cleanness
P :ln — 20Ut
L nondeterministic

u-robust cleanness




RObUSt Cleanness sequential

P :ln — 20U
L nondeterministic

l-robust cleanness u-robust cleanness
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Robust Cleanness [

P :n — 20ut
L nondeterministic

l-robust cleanness +  u-robust cleanness ~ Hausdorff-based robust cleanness

H(dou)(P(i), P(I") < ko
L Hausdorff distance




Robust Cleanness in Temporal Logic

robust cleanness in HyperLTL:

A

V. Ve, 3!, Stding, — (G(im = izr) A((dout(0n: ,0ms) < Ko) W (din(int ,imy) > /ﬁ:;)))

robust cleanness in HyperSTL:

V71, V. 3m}. Stdlng, > 0 — (G(|i7rl — i | <0) A ((dout(oﬂrl,om) — Ko < 0) W (din(ins ) ixy) — Ki > O)))

robust cleanness for finite standard behaviour in STL.:

AV (G(lia —ip] <0) A ((dout(0s,0) — Ko < 0) W (din (i, 1) — ki > 0)))

with self-composition by "copying" standard signals into the trace to be checked:

W= (I;0) == W =10 l{00;ss o5leyOs)

20



White Box

Analysis

We know a model that defines @

- Model-Checking

Cleanness is an
observation-based property

P(0) Black Box

for, e.g., O C In* x Out”

We know a subset O’ C O of the system's behaviour

-> Testing or Monitoring




Testing, classically

input

Generate Execute
Test Input System

output

1: Invent a test cycle 2: Fix the car on a chassis dynamometer, attach an 3: Drive the test cycle
emissions measurement device, calibrate it, ...

approx. 1 day per test cycle approx. 1 hr between 30 mins and 1 day for one test cycle



Abbas, Fainekos, Sankaranarayanan, lvancic, Gupta: Probabilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed. Comput. Syst. 2013.

Probablilistic Falsification

Temporal Logic e.g., Signal Temporal Logic (STL) Temporal Logic e.g., Signal Temporal Logic (STL)

pr=T|f>0[=¢oVo|ouUs =T f>0[-¢[6Ve|oUs

* Semantics:

system trace

_~ STL formula : . ,/ _~ robustness estimate

_¢ E E p(é,’w,t):?"

time point ]BI STL formula/ time point 74 E ]RI

Semantics: system trace

- 1 € In

/ \ ” p(p,w,t) < 0= w,t = ¢

local minimum global minimum

minimise,, p(¢,w, 0)
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Robust Cleanness in Temporal Logic .. .

*
llllllllll

Robust Cleanness / --------
n HyperSTL reasoning about two traces simultaneously

Algorithm 2.1 Monte-Carlo falsification

finite standard Input: w: Initial trace, ’R: LRobustness
pehaviow! function, PS: Proposal Scheme
Output: w e M
. while R(w) > 0 do
. w' <+ PS(w)

Robust Cleanness
in STL

a  exp(=f(R(w') = R(w)))
r <— UniformRandomReal(0, 1)

1
2
3

o _ 4:

ﬁa\s\f\ca“on 5. 1f r < a then
6 w — w'
7
3

end if
. end while

Automated Test
Cycle Generation




L olaDrives

Welcome to LolaDrives

I

OBD <> B|Uet00th Adapter RDE Monitoring

az O

Profiles History

Privacy

Acknowledgements e

On-Board Diagnostics (OBD) Smartphone

LolaDrives App

=> Originally for Real Driving Emissions Tests

-> Can replace the external NOx emissions measurement device
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Drive Car on the Road

Drive Car in the Lab

Input causing highest

Refine Car Emissions
Prediction

emissions

accumulated output input sequence
total amount of emitted NOXx speed cycle

Probabilistic Falsification



A synthesised test input Audi A6 Avant (2020)

NEDC emissions (NOx): 86 mg/km

Generated emissions (NOx): 182 mg/km

ki = 15km/h
120 -

a\

300 1,000 1,180
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Example — Software Doping

New European Driving Cycle (NEDC):
120 °






Al Act

Regulates the use of Al in Europe.
Final signature on June 13, 2024.

Publication expected soon:

Official Journal of the European Union

|s about “risks” and about “Al systems”.

(Spin is inherited from regulatory texts on product safety.)



Al System?

An Al system can infer how to generate outputs from inputs or data.
k predictions, content, recommendations, or
decisions which can influence physical and

virtual environments
Inference by

* machine learning approaches

that learn from data how to achieve certain objectives, or
* logic- and knowledge-based approaches

that derive from encoded knowledge or

from symbolic representation of the task to be solved.

Al systems have some degree of independence of actions from human involvement

and of capabilities to operate without human intervention.
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Al RISKS
The Pyramid

UNACCEPTABLE RISK

e.g., social scoring, certain facial recognition

O

high HIGH RISK
requirements e.g. access to education, hiring, immigration

MINIMAL RISK

minimal requirements . .
e.g. spam filters, video games



Al System? High Risk?

A * A compiler for a high-level programming language
regardless of its (potentially excessive) complexity, ) 0 N risk
used to compile the code to run an airbag controller.

Al * A purely logic-based system that can infer how to decide
whether the airbag inside some car has to ignite. h|g N risk

* A purely logic-based system that can infer
whether the airbag inside some car has to ignite. hlg N risk

2N

* A system where machine learning from past accident
Al characteristics has been used to infer how to decide |, . .
whether the airbag inside some car has to ignite. ~ NIGN FISK



‘ You are (part of) a provider as defined by Art. 3(3) of the EU Al Act.

Art. 3(63)

Working

on a GPAI
model?

No

Yes

Art. 3(1), (66)

Working

-

on an Al
system? No

Yes
Art. 2

In scope, no

\ 4

EU Al Act

a

does not
apply.

exemption? No

Art. 2

Yes
Art. 5

IS it

No
Art. 6, Annex | and IlI

Intended to

\_

Ban on
Al system.

No

-

No

(also) serve high-risk

DUrpose? No

Yes

No further
obligations.

Requirements for high-risk

) 4

\ 4

Al systems apply.
Art. 8-15

J -

Consider transparency
obligations.
Art. 50

from that

In scope, no

exemption?

GPAI model obligations

apply.
Art. 51-56

Art. 3(1)

Integrating
GPAI model into Al
system?




STEP 1:

Development of
a high-risk Al
system

STEP 2:

Conformity
assessment and
compliance with
Al requirements

(some systems:
notified body

. involved)

STEP 3:

Registration of

stand-alone Al

systems in EU
database

STEP 4:

Signing of
conformity
declaration +
CE marking

Al Act for the Working Programmer: High Risk

STEP 5:

Substantial
changes? Back
to STEP 2

"Risks for health, safety and fundamental rights of persons.”




Al Act for the Working Programmer

Art 9: Risk management

- ~, Art 10: Data and data governance

STEP 2: Art 11: Technical documentation
Conformit |
asseZQn?QTt' gnd Art 12: Record keeping

compliance with o _ .
Alrequirements | Art 13: Transparency and provision of information to users

(some systems: |
notified body Art 14: Human oversight
involved)

Art 15: Accuracy, robustness and cybersecurity



Human Oversight: Article 14

For the purpose of implementing paragraphs 1, 2 and 3, the high-risk Al system shall be

provided to the deployer in such a way that natural persons to whom human oversight is

assigned are enabled, as appropriate and proportionate:

(a)

(b)

(c)

(d)

(€)

to properly understand the relevant capacities and limitations of the high-risk Al
system and be able to duly monitor its operation, including in view of detecting and

addressing anomalies, dysfunctions and unexpected performance;

to remain aware ol the possible tendency of automatically relying or over-relying on
the output produced by a high-risk Al system (automation bias), in particular for
high-risk Al systems used to provide information or reccommendations for decisions

to be taken by natural persons;

to correctly interpret the high-risk Al system’s output, taking into account, for

example, the interpretation tools and methods available;

to decide, 1n any particular situation, not to use the high-risk Al system or to

otherwise disregard, override or reverse the output of the high-risk Al system;

to intervene in the operation of the high-risk Al system or interrupt the system
through a “stop” button or a similar procedure that allows the system to come to a

halt in a safe state.




Effective Human Oversight

EPISTEMIC ACCESS

/(@V
X

has sufficient knowledge of
the decision situation

CAUSAL POWER

has power to establish
sufficient causal connection

v

FITTING INTENTIONS

has fitting intentions for
their role

MORAL RESPONSIBILITY

EFFECTIVENESS IN HUMAN OVERSIGHT




Article 14: Human Oversight

The high-risk Al system shall be designed in such a way that the OP is enabled to...

a) Understand the limits and capacities of the system and duly monitor
Its operation

b) ~Remain aware” of the automation bias

c) Correctly interpret the system's output

d) Decide not to use the system or disregard, override or reverse its decisions
e) Intervene or interrupt the system, e.g. through a ,stop” button

As appropriate and proportionate to the circumstances...



Article 14: Human Oversight

EPISTEMIC The high-risk Al system shall be designed in such a way that the OP is enabled to...
ACCESS

~

a) Understand the limits and capacities of the system and duly monitor
Its operation

e CONTROL b) ~Remain aware” of the automation bias
v c) Correctly interpret the system's output
o X
FITTING 3
INTENTIONS . d) Decide not to use the system or disregard, override or reverse its decisions
CAUSAL _
POWER e) Intervene or interrupt the system, e.g. through a ,stop” button

As appropriate and proportionate to the circumstances...
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Facilitators and Inhibitors of Effectiveness -~
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Facllitators and Inhibitors of Effectiveness \~

technical design

causal power | e . . o O
epistemic access ° ° ° ° ° . . O . O . . . O
self-control ° o O . O o .

fitting intentions . o O . O . O °/O




Technical Aspects of Effectiveness

FACTORS

a

DESIGN
CHOICES

N
6-°¢<Q o‘é\b
5 ‘6‘5"& L
o $ S ST S ¢
DQ 1139 O &;d og {&\
& T o0 & o &
eﬁ- ’g_e' Kﬁa 66 ES'%
N A 4
XAl and :
peripherals interpretability simulators
runtime monitors :
model choice
methods for taking model

parameter tuning

over manual control properties/cards




Technical Aspects of Effectiveness

FACTORS

DESIGN
CHOICES

* FairnessMoaonitor

» output of PP

* falrness score

» (counter)example
( Jexamp




Example — Individual Fairness

Black Box

A

high-risk system

Human/Oversight




[ Data about a human

Example — Individual Fairness
P :ln — Out

sequential, deterministic j & Score

Black Box

A

high-risk system

Human/Oversight

T
......
i



Robust Cleanness
P :Iln — QOut

\ sequential,

distance function for inputs, (In x In) — Rxg deterministic
s distance function for outputs, (Out x Out) — R>q

Contract € = (Stdln, dj,, dout, ki, Ko) i € StdIn

standard inputs _) k U threshold for output distance
Stdin C In threshold for input distance

i’ € In




Dwork C, Hardt M, Pitassi T, Reingold O, Zemel R. Fairness through awareness. ITCS 2012.

Baseline: Lipschitz-Fairness

P :In — Out
\ sequential,

deterministic

Forall i1,i2 € In, doyt(P(i1), P(i2)) < L - d,(i1,i2)

sub-
SCOTIc
0.2
* din and dout related by a constant L
* ranges over all input pairs
0.05
* monitorability is problematic 0.0

0.19 0.2 1.0
b)



Individual Fairness
P :In — Out

T C In \ sequential,

deterministic
61’ |
Forall i1,i2 € In, doyt(P(i1), P(i2)) < LwheliT; 12)

F(dinGi, 1)) sub-

SCOTC

0.2
... assuming a Fairness Contract F = (d|n, dout, f)

* din and dout related by means of a function f

0.05
0.02

0.19 0.2 1.0
b)



Individual Fairness

P :In — Out
\ sequential,

deterministic

Forall iy € Z,iz € In, doyt(P(i1), P(i2)) < f(din(i,i))
sub-
SCOre

0.2
.. assuming a Fairness Contract Jf = (d|n, dout, f)

* din and dout related by means of a function f

0.05
0.02

 monitorable, if Z is finite 019072 1.0
b)

* distinction of actual vs. synthetic inputs




Fai rn ess Awa re AI System [ Data about a human

P :ln — Out

\ sequential, & Score
deterministic

Forall iy € Z,iz € In, dout(P(i1), P(i2)) < f(djn(i,i))

Black Box

A —3 Score

high-risk system




Fairness Aware Al System [ oo sboua humar

P :In — Out
\ sequential, &

. . i ] deterministic
Forall i1 € Z,i2 € In, do,:(P(i1), P(i2)) < f(dn(i,i"))

Score

Black Box

Input — A L5 score

high-risk system

—> falrness score

FairnessMonitor
—— (counter)example




Fairness Monitoring

Forall iy€ Z,i2 € In, doy:(P(i1),

P(i2)) < f(din(i,i))

Algorithm 2.1 Monte-Carlo falsification

Input: w:
function, PS: Proposal Scheme
Output: w e M

Initial trace, R: Robustness

1: while R(w) > 0 do

2
3
4:
D:
6
7
8

w’ < PS(w)

o  exp(—B(R(w') — R(w)))
r < UniformRandomReal(0, 1)
if »r < o then

w — w'
end if

. end while

Fairness score — Robusthess estimate

F(aa's) = f(dln(aals))

— dOut(P(ia)a P(iS))

F(Z,is) := min{F (i, is) | ia € T}

Rz(is) =

F(Z,i)



Fairness Monitoring

Algorithm 2.1 Monte-Carlo falsification

Algorithm 2 FairnessMonitor,

Input: w: Initial trace, R: Robustness

with £&-min S = (£,i1,i2) only if (&,i1,i2) € S and for all (¢,i,,i,) € S, & > ¢ function, P3: Proposal Scheme

Output: w e M

Falsification Parameters: PS: Proposal scheme, 5: Temperature parameter 1: while R(w) > 0 do

Input: System P : In — Out, Fairness contract F = (dj,, dout, f), and set of
actual inputs Z
Output: A minimal fairness score triple from R x Z X In.
1: I < any input I, € Z
(5& Imin |s) — &- mm{( (aa |s) la, |s) ‘ la € I}
(£m|n7|17|2) (&-Hmmg |5)

4: while not timeout do

10:
11:
12:
13:

2:  w' < PS(w)

32 a < exp(—(R(w') — R(w)))
4:  r < UniformRandomReal(0, 1)
5. 1f r < a then

6 w — w'

7. end if

8

! PS(ic, P(ic)) . end while

( | itnins 1s) <= &-min{(F (ia, ig), ia,ig) | ia € T}

(£m|n7|1,I2) (—5 mm{({m,n,il,ig),( ’?i:nin?i;)} : B _
o exp(—B(E — £)) Fairness score — Robustness estimate

A UniformRandomReal (0, 1) F( P IS) — f(dh-.( I3, |5)) — dOut(P(ia)a P(IS))

if »r < a then
I < i’

£ ¢ F(Z,is) :== min{F(is,is) | i € T}
end if

14: end while RZ('g) = F(I, |s)

15: return (Emin,i1,i2)




Cases of Unfairness

Outp ut
Output
Outp ut

Individual scores worse Individual scores better No unfairness detected.
than synthetic counterpart. than synthetic counterpart.



In Practice

Alexa
Rainbow University Poor Grades
Score: 0.5 J Trump University

Score: 0.7

Very similar to Eugene Snow University Same Poor Grades

Score: 0.75 Score: 0.6 Saarland University
Score: 0.4
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