e

Evaluating Cloud-native Deployment Options
with a Focus on Reliability Aspects

Franka Knoch, Robin Lichtenthaler, Guido Wirtz

01.07.2024

Distributed Systems Group
University of Bamberg

Motivation A Quality Model for cloud-native application architectures

#33
i)

Excerpt from the quality model (https://clounaqg.de/quality-model):

Recoverability

/N

Automated
restarts

Automated
infrastructure
maintenance

J

Quality Aspect

Product Factor

~

Health and
readiness
checks

An abstract desirable observable
behaviour of a system

An identifiable characteristic of
" software system

Availability

4

»

/

[Service replication} [Distribution } E

Fault Tolerance

3

Autonomous fault
handling

|

1‘

|

Physical service
Distribution

)l

Physical data
distribution

o

» Quality model formulated based on literature
> Intended as a basis to evaluate software architectures

01.07.2024 Evaluating Cloud-native Deployment Options with a Focus on Reliability Aspects | Robin Lichtenthaler | SummerSoC 2024

Distributed Systems Group — WIAI — University of Bamberg

https://clounaq.de/quality-model

. #
Approach Overview i)

Overall goal: | Evaluate software architectures of cloud-native applications according to quality aspects

4 N\

In this work: Extend the approach to express cloud-native characteristics with a focus on reliability

/

——_------------___-__-—
-_—

-
o~ - Modeled software T ST
P architecture y
Application Express /
iImplementation
Implement 2 options (RQ2) Quality Model
deployment options :
and reliability e).

based on the factors of the quality model

01.07.2024 Evaluating Cloud-native Deployment Options with a Focus on Reliability Aspects | Robin Lichtenthaler | SummerSoC 2024

Distributed Systems Group — WIAI — University of Bamberg

Approach Use Case Application: TeaStore

a TeaStore
(https://github.com/DescartesResearch/TeaStore)

0 Microservices reference application
developed to enable benchmarking
experiments

0 Established and popular in research

Q Features
= Services implemented in Java
= Communication via HTTP Calls
= Relational database as a data store

= Pre-configured Docker images and
Kubernetes Deployment descriptions

01.07.2024 Evaluating Cloud-native Deployment Options with a Focus on Reliability Aspects | Robin Lichtenthaler | SummerSoC 2024

Distributed Systems Group — WIAI — University of Bamberg

https://github.com/DescartesResearch/TeaStore

i
Results Implementation options for reliability aspects)

Quality Aspect | Product Factor Implementation option

Guarded Ingress APl Gateway | Ingress Controller | AWS WAF
Service Distribution Node Selectors | (Anti-) Affinity Rules | Pod topology spread
constraints
Data Distribution StatefulSet | ManagedDatabase
I Built-In Autoscaling EC2 Autoscaling Groups | K8s Cluster Autoscaler | Karpenter |
Availability Vertical Pod Autoscaler | Horizontal Pod Autoscaler

Enforcement of Appropriate Resource Workload Annotation | Monitoring Services | Vertical Pod Autoscaler

Boundaries
Seamless Upgrades Rolling Upgrades | Blue-Green Strategy
Health and Readiness Checks Liveness and Readiness Probe | Container Health Checks

Automated Infrastructure Maintenance Worker Node Versioning | Cluster Versioning

Recoverabilit
4 Use Infrastructure as Code AWS CloudFormation | Terraform

01.07.2024 Evaluating Cloud-native Deployment Options with a Focus on Reliability Aspects | Robin Lichtenthaler | SummerSoC 2024
Distributed Systems Group — WIAI — University of Bamberg

73
Results Exemplary implementation option i)

Physical Data Distribution via Managed Database et
EAWSCIDUC{ 7777777777777777777777777777777 R R o |
0 TeaStore deployed on AWS Elastic Kubernetes Service N ey - @LD R
) Public subnet [l Public subnet |) Public subnet
0 TeastoreDB provided as an AWS Relational Database s e | e
Service (RDS) Instance and integrated into the Cluster via |
AWS Controllers for Kubernetes (ACK)
apiVersion: rds.services.k8s.aws/vlalphal | ij
kind: DBInstance & Private subnet &) Private subnet ‘ & Private subnet
o Distribution through Multi-Availability-Zones flag and e B
additional Read replicas oy y By
spec: R I
multiAZ: true
aws rds create-db-instance-read-replica \ S EEQ
--availability-zone us-east-2a e

01.07.2024 Evaluating Cloud-native Deployment Options with a Focus on Reliability Aspects | Robin Lichtenthaler | SummerSoC 2024
Distributed Systems Group — WIAI — University of Bamberg

Results Representing cloud-native characteristics in a model

Entity Deployment extensions Reliability extensions

Component -
Service WebUI
Backing Service Reqistry

Storage Backing

. TeaStore DB
Service

Endpoint Place order

External Endpoint Show products

WebUI

Al — Place Order
Infrastructure AWS EKS

. WebUI
Deployment Mapping L AWS EKS
Data Aggregate Order

\VERS;
0“@\0*—0{"
N \ g /200

artifact
assigned_networks

kind provisioning
environment_access supported_artifacts
maintenance assigned_networks

deployment

deployment_unit assigned_account

load_shedding

proxied by
rate_limiting health_check
readiness_check idempotence
UL retries
circuit_breaker
availability zone self_scaling

region
deployed_entities_scaling

supported _update_strategies
enforced_resource_bounds

update_strategy
automated_restart_policy

resource_requirements
replicas

usage_relation

2

OTTO.,
oTr

01.07.2024 Evaluating Cloud-native Deployment Options with a Focus on Reliability Aspects | Robin Lichtenthaler | SummerSoC 2024
Distributed Systems Group — WIAI — University of Bamberg

7
Results Exemplary representation in the model i)

rds_instance:
type: cna-modeling.entities.StorageBackingService
properties: ey
managed: true
software_type: proprietary
stateless: false 0L e et e e e e ennee :

load_shedding: false Image- Recom-
. . provider der
assigned_networks: o~ 7/ /PN A 3 men :
- teastore-private-1 | ' RDS Instance
- teastore-private-2 P

- teastore-private-3 pplication Load>
artifacts:

/ AWS EKS Cluster \ .
rds_instance: i :

type: AWS.RDS.Instance

requirements: /AWS Load Balancing\ Managed EC2 Node Group /AWS Relational Database Servic\
- host:

node: aws_relational_database_service
relationship: aws_relational_database_service_hosts_rds_instance
aws_relational database_service_hosts rds_instance:
type: cna-modeling.entities.HostedOn.DeploymentMapping
properties:
deployment: automated-declarative
deployment_unit: RDS Instance
replicas: 3
update_strategy: blue-green
automated_restart_policy: onProcessFailure
assigned _account: default-account
resource_requirements: unstated

aws_relational_database_service:
type: cna-modeling.entities.Infrastructure
properties:
kind: cloud-service
environment_access: none
maintenance: transparent
provisioning: transparent
supported_artifacts:
- AWS.RDS.Instance
availability_zone: us-east-la,us-east-1b,us-east-1c

01.07.2024 Evaluating Cloud-native Deployment Options with a Focus on Reliability Aspects | Robin Lichtenthaler | SummerSoC 2024
Distributed Systems Group — WIAI — University of Bamberg

Limitations & Future Work

0 One cloud provider (AWS) and one application considered
— Extend to other providers and applications

a Focus on reliability
— Integration of quality aspects in addition to reliability

a Usage of TOSCA only for modeling, not for deployment.
|deally both should be possible, but there are challenges
— Happy to discuss with you at the poster session

a Further development and validation of the overall approach

#33
i)

01.07.2024 Evaluating Cloud-native Deployment Options with a Focus on Reliability Aspects | Robin Lichtenthaler | SummerSoC 2024

Distributed Systems Group — WIAI — University of Bamberg

#aa
Conclusion

a Various implementation possibilities for cloud-native characteristics
A Often specific to certain technologies or cloud provider offerings
A Interdependencies between decisions for different options
— Abstraction and comparability is difficult
— Contribution of a set of practical implementations as a data basis

a For the chosen modeling approach a level of abstraction needs to be
chosen (inherent challenge of modeling)

" |f too abstract, differences between implementation options diminish
= |f too detailed, modeling becomes an effort
— Focus on major differentiating aspects

01.07.2024 Evaluating Cloud-native Deployment Options with a Focus on Reliability Aspects | Robin Lichtenthaler | SummerSoC 2024

10
Distributed Systems Group — WIAI — University of Bamberg

I
=

Eﬁ
fogs

More detailed information online

Ofy+0
=]

https://github.com/frankakn/cloud-native-deployment https://clounag.de
Implementations and models with Tooling aimed at supporting the
more detailed descriptions overall approach (in development)

01.07.2024 Evaluating Cloud-native Deployment Options with a Focus on Reliability Aspects | Robin Lichtenthaler | SummerSoC 2024 11

Distributed Systems Group — WIAI — University of Bamberg

https://github.com/frankakn/cloud-native-deployment
https://clounaq.de/

Thank you for your attention!

01.07.2024

Evaluating Cloud-native Deployment Options with a Focus on Reliability Aspects | Robin Lichtenthaler | SummerSoC 2024
Distributed Systems Group — WIAI — University of Bamberg

ra

	Folie 1: Evaluating Cloud-native Deployment Options with a Focus on Reliability Aspects
	Folie 2: Motivation A Quality Model for cloud-native application architectures
	Folie 3: Approach Overview
	Folie 4: Approach Use Case Application: TeaStore
	Folie 5: Results Implementation options for reliability aspects
	Folie 6: Results Exemplary implementation option
	Folie 7: Results Representing cloud-native characteristics in a model
	Folie 8: Results Exemplary representation in the model
	Folie 9: Limitations & Future Work
	Folie 10: Conclusion
	Folie 11: More detailed information online
	Folie 12
	Folie 13: Backup
	Folie 14: Problem – What is Cloud-native?
	Folie 15: How the Quality Model should work - a simpler example
	Folie 16: Implementation Details: Structure
	Folie 17: Results Implementation options for reliability aspects
	Folie 18: Results Representing cloud-native characteristics in a model

