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Motivation and Content

= Preliminaries: Supervised learning on quantum computers
= Learning from output states vs. learning from measurements
= Requirements for minimal risk

= Research question

= Analytical results
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= Experimental evaluation

= Summary and future work




Supervised Learning using QNNs

= Approximate unknown target transformation U

= By using quantum states as training samples
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= @Goal:

= Obtain a quantum circuit I/ that behaves the same as U on the training data

= Minimize a loss function on the training data

= Assumption: It behaves the same as U on all possible inputs




training samples




Different Information/Different Scenarios

1: Learning output states

2: Learning measurements
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U: original transformation, O: observable, I/: QNN, F: state fidelity



Supervised Learning using QNNs

= When learning output states:

= Entanglement in training samples reduces expected risk
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e Sharma, Kunal, et al. "Reformulation of the no-free-lunch theorem for entangled datasets." Physical Review Letters 128.7 (2022): 070501.

* Mandl, Alexander, et al. "On Reducing the Amount of Samples Required for Training of QNNs: Constraints on the Linear Structure of the Training Data."
arXiv preprint arXiv:2309.13711 (2023).




Requirements for Minimal Risk

= Entanglement proves to be a valuable resource when learning output states

= Learning from output states:
= General bounds on the risk are proven

= Mathematical structure of the training data for minimal expected risk is described
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" Learning from measurements:
= Some bounds on the expected risk after training are known

= No complete description of the training data minimal expected risk available

* Sharma, Kunal, et al. "Reformulation of the no-free-lunch theorem for entangled datasets." Physical Review Letters 128.7 (2022): 070501.
* Mandl, Alexander, et al. "On Reducing the Amount of Samples Required for Training of QNNs: Constraints on the Linear Structure of the Training Data."
arXiv preprint arXiv:2309.13711 (2023).




Research Questions/Contributions

" Find requirements for minimal risk when learning from measurements

@;,e For highly entangled data Without entanglement
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" First step: Limit observables to one-dimensional projectors O = |0){0]|

= Provide fundamentals for future generalization




Minimal Risk Training Samples



Methods

Risk: average loss of  Training loss impact

infinitely many the risk after training
possible input states negatively
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Reformulate risk in Use best-case as Infer loss on

terms of fidelity of a guideline: QNN V' is
pair of states perfectly trained

arbitrary inputs
(= risk).
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Minimal Risk Training Samples: No Entanglement

Train QNN V to

= replicate operator U when measured with observable O = |o){o|

" using a set of training samples S

(

A single training input |y) = UT|o) with its associated output
fu(v) suffices to train V with zero risk.

\
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Minimal Risk Training Samples: Entangled Data

Train QNN V to

= replicate operator U when measured with observable O = |o){o|

= using a set of training samples S that are entangled with an auxiliary system
Schmidt Schmidt
coefficients basis states

/

|x) = cqlag) & [by) + czlaz) @ |by) ...

If the training input contains |y) as the basis state with the
largest coefficient c;, then this entangled input with its
associated output f;;(x) suffices to train V with zero risk.

|x) = cqlag) & [by) + c2|y) & |by) ...
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Minimal Risk Training Samples: Entangled Data

Train QNN V to

= replicate operator U when measured with observable O = |o){o|

= using a set of training samples S that are entangled with an auxiliary system
Schmidt Schmidt
coefficients basis states

/

|x) = cqlag) & [by) + czlaz) @ |by) ...

If the training input contains |y) as the basis state with the
largest coefficient c;, then this entangled input with its
associated output f;;(x) suffices to train V with zero risk.

In particular: Always holds if ¢7 >

N |-
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Experimental Evaluation

= Analytical investigation found specific training samples that minimize risk

= Entanglement does not necessarily decrease the risk

= Experiment
= Evaluate analytical findings

= |nvestigate the performance if |y) is not available (e.g., random inputs)
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Simulated QNN Training

e Randomly sample 4-qubit state |0) to obtain O = |0){0]

e Randomly sample 4-qubit target operator U

e Generate training data according to analytical results

e Optimize parametrized quantum circuit V(é) to minimize training loss

e Calculate risk after training
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Experiment Results

Effect of the Schmidt coefficient ¢;|y) for different Schmidt ranks r for t = 1 training sample
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Experiment Results

= Effect of entanglement for randomly sampled training inputs and varying number of training samples

Number of training samples t
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Conclusion and Future Work

= When only the measurement result is known:
= For one-dimensional projectors: one training sample is enough.
= |f sample |y) is known: Entanglement provides no benefit

= Entanglement produces only minimal improvement for random inputs

= Future work:
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= Generalizations for other observables
= Effect of measurement processes on auxiliary system

= Perfect training might be hard to achieve: evaluate cost function landscape
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