

Automated Planning-as-a-Service Theory and Practice

Andrea Marrella

Associate Professor – Sapienza University of Rome

Outline

- Introduction to Automated Planning in Al
- Automated Planning as-a-Service
- Context-Aware Trace Alignment via Automated Planning
- Concluding Remarks

Outline

- Introduction to Automated Planning in Al
- Automated Planning as-a-Service
- Context-Aware Trace Alignment via Automated Planning
- Concluding Remarks

AI AND AUTONOMOUS BEHAVIOUR

At the center of the problem of autonomous behavior is the **control problem** (or **action selection problem**).

• specify a **controller** that selects the action to do next

Hard-coded solutions specify a pre-scripted controller in a high-level language.

- They do not suffer combinatorial explosion.
- The burden is all put on the programmer.
- Hard-coded solutions tend to constraint the search in some way.

The question of **action selection** for AI researchers is:

• What is the best way to intelligently constrain this search?

DEALING WITH AUTONOMOUS BEHAVIOR IN AI

Learning-based approach

- The controller is **learnt from experience**.
 - ✓ Discovery and interpretation of meaningful patterns for a given task.
 - Learned solutions are usually black-box.

Model-based approach

- The controller is **derived automatically** from a model of the domain of interest, the actions, the current state, and the goal.
 - ✓ The models are all conceived to be general.
 - The problem of solving a model is computationally intractable.

Focus on Automated Planning

AUTOMATED PLANNING IN AI [Geffner-M&C13]

• Automated planning is a model-based approach for the automated synthesis of plans of actions to achieve goals.

PLANNING MODELS

Credits to M.Helmert, G.Roger (University of Basel)

CLASSICAL PLANNING MODEL

Credits to M.Helmert, G.Roger (University of Basel)

CLASSICAL PLANNING MODEL

- **finite** and **discrete** state space *S*
- a known initial state $l \in S$
- a set $S_G \subseteq S$ of **goal states**
- **actions** $A(s) \subseteq A$ applicable in each $s \in S$
- a deterministic transition function s' = f(a, s) for $a \in A(s)$
- positive **action costs** *c*(*a*,*s*)
- A solution or plan is a sequence of applicable actions $\pi = a_0$, ..., a_n that maps *I* into S_G
 - There are states s_0 , ..., s_{n+1} such that $s_{i+1} = f(a_i, s_i)$ and $a_i \in A(s_i)$ for i = 0, ..., n and $s_{n+1} \in S_G$
- A plan is **optimal** if it minimizes the sum of action costs $\sum_{i=0,...,n} c(a_i, s_i)$.
 - If costs are all 1, plan cost is plan length.

COMPLEXITY OF CLASSICAL PLANNING

- Planning: thinking before acting
- Classical Planning: the "easy" case (deterministic, fully observable, etc.)
- Solved by state-space search
- Computationally **intractable** even for the simplest models.
 - **PSPACE-complete** because of huge number of states.
 - Number of states grow exponentially with the input size
- Classical planners solve efficiently real problems with hundreds of propositions!

EXAMPLES OF PLANNING PROBLEMS: EARTH AND SPACE

Satellites can not always communicate with ground operators.

On-board planning to view interesting natural events: http://ase.jpl.nasa.gov/

SIADEX – plan for firefighting Limited resources Plan execution is dangerous!

NASA Mapgen / Mars Rovers

Primary platform for creating daily activity plans for Spirit, Opportunity Mixed-initiative tool: Human in the loop Robots on other planets may be hours away by radio.

AUTOMATED PLANNING IN SOC AND BPM FIELDS

Artificial Intelligence Volume 236, July 2016, Pages 30-64

Domain-independent planning for services in uncertain and dynamic environments

<u>Eirini Kaldeli</u>^{a b} 🖂 , <u>Alexander Lazovik</u>^b, <u>Marco Aiello</u>^b

X in **& f** ■

AUTOMATED PLANNING IN SOC AND BPM FIELDS

Home > Journal on Data Semantics > Article

Automated Planning for Business Process Management

Original Article | Published: 01 November 2018

Volume 8, pages 79–98, (2019) Cite this article

Download PDF 坐

✓ Access provided by CARE-CRUI COMPACT

Journal on Data Semantics

Andrea Marrella M

Use our pre-submission checklist →

Outline

- Introduction to Automated Planning in Al
- Automated Planning as-a-Service
- Context-Aware Trace Alignment via Automated Planning
- Concluding Remarks

HOW TO INVOKE A PLANNER AS-A-SERVICE?

Software systems can invoke planners as **external services**.

No expertise of the internal working of the planners is required to build a plan.

Credits to M. Dumas, et al. Fundamentals of BPM. Springer 2018

PDDL - PLANNING DOMAIN DEFINITION LANGUAGE

Basic components of a PDDL planning task:

- **Objects**: Things in the world that interest us.
- **Predicates**: Properties of objects that we are interested in; they can be *true* or *false*.
- Initial state: The state of the world that we start in.
- Goal specification: Things that we want to be true.
- Actions/Operators: Ways of changing the state of the world.

Planning tasks specified in PDDL are separated into two parts/files:

- A *planning domain* file for predicates and actions.
- A *planning problem* file for objects, initial state and goal specification.
 - The domain models the relevant aspects of the world in which we are planning, while the problem definition is a specific problem instance in the domain that specifies *where we begin* and *what we must achieve*.

HISTORY AND FRAGMENTS OF PDDL

[1998] PDDL 1.2

Basic version with STRIPS, ADL and conditional effects.

[2002] PDDL 2.1

It introduces **numeric fluents** (e.g., to model *non-binary resources* such as distance, weight, temporal features, etc.), **plan-metrics** (to allow *quantitative evaluation* of plans, and not just goal-driven), and **durative/continuous actions** (which could have variable, non-discrete length, conditions and effects).

[2004] PDDL 2.2

It introduces **derived predicates** (to model the dependency of given facts from other facts), and **timed initial literals** (to model exogenous events occurring independently from plan-execution).

[2006] PDDL 3.0

It introduces **preferences** (hard- and soft-constraints, in form of logical expressions, to be satisfied in specific points of the plan).

[2008] PDDL 3.1

It introduces **object fluents** (functions' range can be any object-type).

DOMAIN FILE

PDDL skeleton of a planning domain file:

```
(define (domain <domain name>)
 (:requirements :strips)
 (:predicates
    <PDDL code for predicates>
   )
    <PDDL code for first action>
   [...]
   <PDDL code for last action>
)
```

<domain name> identifies the name of the planning domain, e.g., blocks-world.

PROBLEM FILE

PDDL skeleton of a planning problem file:

```
(define (problem <problem name>)
 (:domain <domain name>)
  <PDDL code for objects>
  <PDDL code for initial state>
  <PDDL code for goal specification>
)
```

<problem name> identifies the name of the specific planning task, e.g., blocks1.

<domain name> matches the domain name in the corresponding domain file, e.g., blocks-world.

EXAMPLE: REACHABILITY IN PETRI NETS

Given a Petri Net (PN) with an initial marking m_0 and a target marking m_n , if there exists a sequence of transition firings $\langle t_1...t_n \rangle$ that leads from m_0 to m_n , then m_n is said to be **reachable** from m_0

One available action: firing

- If t is *enabled*, firing t changes the marking of the PN.
 - Each token from the input places of t is consumed, and one token is produced in any output place of t

THE REACHABILITY PROBLEM IN PDDL

Planning Domain

THE REACHABILITY PROBLEM IN PDDL Planning Problem

```
(define (problem pr1)
   (: domain petri - net)
   (: objects start p1 p2 p3 p4 end – place
                   a b c d e f - transition)
   (: init (token start) (input_place a start)
          (output_place a p1) (output_place a p2)
          (input_place b p1) (output_place b p3)
          (input_place c p2) (output_place c p4)
          (input_place d p1) (input_place d p2)
          (output_place d p3) (output_place d p4)
          (input_place e p3) (input_place e p4)
          (output_place e end) (input_place f p3)
          (input_place f p4) (output_place f p2)
          (= (total - cost) 0))
   (: goal (and (token end) (not (token start))
               (not (token p1)) (not (token p2))
               (not (token p3)) (not (token p4))))
   (: metric minimize (total-cost))
```


SPECIFYING A PDDL MODEL

- Many tools are valuable in the process of writing (and debugging) a PDDL model.
- For simple problems, a good solution is <u>http://planning.domains</u>, an on-line repository of planning benchmark models that includes:
 - an *on-line editor* with PDDL-specific features such as syntax highlighting and semi-automatic instantiation of some common model patterns.
 - an interface to a *planner as a web service*. However, the planner it makes available does not support all PDDL, and as it has a runtime limit of 15 seconds it is restricted to solving small problems.

Planning.Domains

A collection of tools for working with planning domains.

planning.domains	:	1) api.planning.domains 🖻	2) solver.planning.domains 🛚 🖻
	Ī	3) editor.planning.domains 😋	4) education.planning.domains 🖻

PRODUCING A PLAN

• State-of-the art planners* provide **customized implementations** of the search algorithms with varying features of completeness, optimality, and memory complexity.

****Cf.** <u>http://icaps-conference.org/index.php/main/competitions</u>

- **Generality**: A planner can solve *arbitrary problem instances*.
 - A planner does not know what the actions, and domain stand for.
 - This is very different from writing a *domain-specific* solver.
- Scalability: Planners embed very effective *domain-independent heuristics* to drive the searching task towards the goal.
 - A *heuristic function* provides an estimate of the cost to reach the goal from the current state (Examples: Best-First Search, A*, Hill Climbing, etc).

THE REACHABILITY PROBLEM IN PDDL Optimal plan

THE REACHABILITY PROBLEM IN PDDL Suboptimal plan

The quality of a solution depends by the specific search algorithm employed by the planner. Begin plan -----State I State G 1. (fire a) b b p3 p3 p1 start stari (fire d) 2. . d d 3. (fire f) end end p2 p2 fire(a) C с (fire d) 4. fire(d) fire(f) 5. (fire e) fire(d) fire(e) End plan

INVOKING A PLANNER AS-A-SERVICE

Outline

- Introduction to Automated Planning in Al
- Automated Planning as-a-Service
- Context-Aware Trace Alignment via Automated Planning
- Concluding Remarks

TRACE ALIGNMENT

- Process models are typically not fully enforced by information systems (human behavior is often involved).
 - Traces of execution can be **dirty** with **spurious** or **missing events**.
 - Possible **discrepancies** between the modeled and the observed behavior.

Trace Alignment finds the best execution sequence of a process model (optimal alignment) that reproduces an execution trace of the process by pinpointing where it deviates [Carmona-van-Dongen-18].

EVENT LOGS

case id	event id	properties				
		timestamp	activity	resource	cost	
	35654423	30-12-2010:11.02	register request	Pete	50	
1	35654424	31-12-2010:10.06	examine thoroughly	Sue	400	
	35654425	05-01-2011:15.12	check ticket	Mike	100	
	35654426	06-01-2011:11.18	decide	Sara	200	
	35654427	07-01-2011:14.24	reject request	Pete	200	
	35654483	30-12-2010:11.32	register request	Mike	50	
2	35654485	30-12-2010:12.12	check ticket	Mike	100	
	35654487	30-12-2010:14.16	examine casually	Pete	400	
	35654488	05-01-2011:11.22	decide	Sara	200	
	35654489	08-01-2011:12.05	pay compensation	Ellen	200	
	35654521	30-12-2010:14.32	register request	Pete	50	
3	35654522	30-12-2010:15.06	examine casually	Mike	400	
	35654524	30-12-2010:16.34	check ticket	Ellen	100	
	35654525	06-01-2011:09.18	decide	Sara	200	
	35654526	06-01-2011:12.18	reinitiate request	Sara	200	
	35654527	06-01-2011:13.06	examine thoroughly	Sean	400	
	35654530	08-01-2011:11.43	check ticket	Pete	100	
	35654531	09-01-2011:09.55	decide	Sara	200	
	35654533	15-01-2011:10.45	pay compensation	Ellen	200	

- Each event in a log refers to an activity of the process and is included in a trace (case), i.e., a run of the process.
- Each event is associated with:
 - A trace/case id
 - A timestamp
 - A process activity
 - (optional) a list of attributes

ALIGNMENT WITH STATIC COST FUNCTION

- Limiting assumption: state-of-the-art alignment algorithms are driven by a static cost function assigning fixed costs to deviations.
- The **context** in which a deviation is found is **neglected**.

Automated Planning-as-a-Service

ও।

SEVERITY BASED ON COST MODEL

- Severity of a deviation \rightarrow based on the context in which it is found.
- **Context**: determined by the position in the trace in which the deviation occurs and, more specifically, by the activities or sequence of activities that occur before or after the deviation.
- Notion of "context" expressed through a dedicated *cost model*
 - Context-dependent variable costs associated to the deviations that may occur in an alignment.

Target: Generate optimal alignments driven by cost models.

Approach:

- 1. Process models as Deterministic Finite State Automata (DFAs)
 - Clear semantics to perform formal reasoning over the process model.
 - Not directly tied to the prescriptive/declarative nature of the process.
- 2. DFA-theoretic manipulations to specify the **alignment instructions**.
- 3. Recasting as a **cost-optimal planning problem** in AI.
- 4. Automated **planning technology** to find **optimal alignments**.

DFA-BASED SOLUTION /1

- Context-aware trace alignment can be solved using DFAs [Acitelli-ICPM22].
 - One augmented DFA for the partial trace.

- Accepts input trace (<C,B,B>) plus all other traces, however...
- ...changes wrt. input trace must be marked by add/del, e.g.,
 - <A,B,C> = del_C add_A B del_B add_C

DFA-BASED SOLUTION /2

• DFA representing the process model augmented to account for **add** and **del** activities.

• Accepts all (possibly repaired) traces satisfying the model.

DFA-BASED SOLUTION /3

- One (or more) DFA(s) to represent the cost model.
- The states of the cost model are all final.
- When **add/del** activities are not related to any cost, we associate them with the fixed cost captured by the static cost function.

Context-aware trace alignment *is the problem of finding a sequence of synchronous steps performed in all augmented DFAs and in the cost model such that -- at the end of the alignment -each DFA is in at least one accepting state and the* **cost of the alignment is minimal**.

EXAMPLE OF CONTEXT-AWARE TRACE ALIGNMENT

EXAMPLE OF CONTEXT-AWARE TRACE ALIGNMENT

Cost Model

Optimal Alignment (cost **4**):

<C,delB,delB,addA>

Automated Planning-as-a-Service

*

FORMULATING TRACE ALIGNMENT IN PDDL

- Problems in PDDL are expressed in two separate parts:
 - Planning Domain:
 - **Planning actions** capture alignment steps in the form of:
 - synchronous moves (no cost)
 - deviations (add and del activities) to the input trace, with non-zero costs.
 - Cost depends by the specific combination of transitions in the DFAs and the cost model.
 - **Domain propositions** encode the structure and the dynamics of the augmented DFAs and the cost model.
 - Planning Problem:
 - Initial state: all DFAs in their starting state.
 - **Goal state**: all DFAs in (at least one) final state.
 - Solution: Optimal (minimal-cost) plan to reach the goal state.

A PLANNING-BASED TOOL FOR TRACE ALIGNMENT

Plar	nning-based Trace	Alignment fo	r Declarative Proce	sses – 🗉 😣
File				
STEP 1: Create	a repository of activiti	es		
Create a new a	ctivity		Repository of activitie	S
		ADD>>	activity11	
			activity7	=
		< <del< td=""><td>activity21 activity14</td><td></td></del<>	activity21 activity14	
			activity15	-
				Next Step >
STEP 2: Create	log traces			
Repository of a	ctivities		Activities in the Trace	
activity11		ADD>>	activity11	
activity7	=	< <del< td=""><td>activity7</td><td></td></del<>	activity7	
activity14		T	activity14	U. U.
activity15	•	Trace#1	activity15	•
		Create/Del		
< Previous St	tep			Next Step >
STEP 3: Define I	LTL/DECLARE constrain	nts		
Constraint:			precedence(activ	itv9 complete. •
constraint.	alternate succession		chain response(a	ctivity14_comp
Activity#1:	not response	<de< td=""><td>L chain precedence</td><td>activity16_co</td></de<>	L chain precedence	activity16_co
Activity#2:	not precedence		1	
	not chain response			
Corresponding	not chain precedence	e _		
< Previous St	not chain succession ** LTL constraint **	•		Next Step >

3 cost-optimal state-of-the-art planners embedded:

- Fast-Downward
- Symba*-2
- Complementary1

Some **patterns** available for recurrent cost models, to mitigate the burden related to their definition.

It accepts in input:

- XES event logs
- Declare models, DFAs in .dot, LTL_f formulas

https://github.com/bpm-diag/PL_DEC_ALIGNER

EXPERIMENT SETTING AND RESULTS Real-life Event Logs

We tested our approach with a *real-life log* and *synthetic logs*.

Real-life log: incident management process

extracted from a dataset available in the UCI Machine Learning Repository, cf. <u>http://archive.ics.uci.edu/ml/index.php</u>.

141,712 events organized in 24,918 traces with various lengths.

Trace	Number	Average	Average	Average Number
Length	of Traces	Preprocessing Time	Searching Time	of Deviations
1 - 10	388	$0.90 \ s$	$0.05 \ s$	6
11 - 20	1231	1.22 s	$0.059 \ s$	11
21 - 30	176	$1.73 \ s$	$0.071 \ s$	20
31 - 40	25	$1.98 \ s$	$0.075 \ s$	31
41 - 50	6	$2.36 \ s$	$0.077 \ s$	40
51 - 60	2	$2.83 \ s$	$0.078 \ s$	56

Performance slightly **decreases**

when the trace size increases.

EXPERIMENT SETTING AND RESULTS Synthetic Event Logs

Target: Study the scalability wrt model size and noise in the traces

- 1. We exploited the equivalence between regular languages and DFAs.
 - An LTL_f formula ϕ can be associated with a DFA that accepts exactly all traces satisfying ϕ [De-Giacomo-Vardi-IJCAI13]
- 2. We created 2 DFAs with the same alphabet of activities and obtained by the conjunction of 15 and 20 LTL_f formulas.
- 3. We specified a cost model assigning a variable cost to the repetition of some specific activities.
- 4. To add noise in the prefix traces, we replaced 3, 4, and 6 LTL_f formulas with their negative counterparts by obtaining 6 "noisy" DFAs.
- 5. For each noisy DFA, we generated 4 logs of 100 traces with different lengths, e.g., from 1 to 50 events, from 51 to 100 events, etc.
- > 24 synthetic logs of varying complexity.

EXPERIMENT RESULTS

SYNTHETIC LOGS (DFA WITH 29182 STATES & 729526 TRANSITIONS)

Planners do not suffer the presence of noisy logs.

	Trace length	SymbA-2* Preprocessing	SymbA-2* Searching	SymbA-2* Steps	Complementary1 Preprocessing	Complementary1 Searching	Complementary1 Steps	Context-Aware Alignment Cost	Alignment Cost
	3 form. modified								
	1-50	0.24	0.92	51	3.14	$2 \cdot 10^{-3}$	50	1.8	1.8
	51-100	0.24	2.44	84	4.79	$4 \cdot 10^{-3}$	84	3.1	2.6
	101-150 151-200	$0.28 \\ 0.37$	$5.36 \\ 14.23$	127 183	$7.46 \\ 14.76$	$6 \cdot 10^{-3}$ $9 \cdot 10^{-3}$	$127 \\ 182$	$\frac{3.7}{4.2}$	$\frac{3.3}{4.2}$
Planners scale well when	4 form. modified								1
	1-50	0.3	1.36	48	3.93	$2 \cdot 10^{-3}$	48	4.8	3.8
ength of the traces increases.	51-100	0.24	2.09	77	4.52	$3 \cdot 10^{-3}$	77	6.9	6.9
	151-200	0.3	6.41	132	10.13	$7 \cdot 10^{-3}$	132	10.8	10.8
	151-200	0.36	12.45	177	16.12	$9 \cdot 10^{-3}$	177	15.9	15.1
	6 form. modified								
	151-200	0.22	1.25	50	3.72	$2 \cdot 10^{-3}$	50	7.2	6.1
	51-100	0.23	2.57	78	5.76	$4 \cdot 10^{-3}$	79		9
	151-200	0.33	7.63	150	10.2	$8 \cdot 10^{-3}$	151		
	151-200	0.35	12.09	184	17.07	$1.1 \cdot 10^{-2}$	185	Planners	enact arou

Planners enact around the same number of steps for alignments of the same cost.

15-20 formulas (3 form. modified)

15-20 formulas (4 form. modified)

15-20 formulas (6 form. modified)

Outline

- Introduction to Automated Planning in Al
- Automated Planning as-a-Service
- Context-Aware Trace Alignment via Automated Planning
- Concluding Remarks

CONCLUDING REMARKS

STRENGTHS

Generality: A planner can solve arbitrary problem instances.

• A planner does not know what the actions, and domain stand for. <u>This is different from a *domain-specific* solver</u>.

Scalability: Results obtained are promising.

• Planners efficiently cope with the size of the state space, which is exponential wrt. the size of the model, the amount of noise and the trace length.

WEAKNESS

- The price for generality is **computational**.
 - Planning is intractable in the worst case, yet large problems in process mining can be solved quickly [De-Giacomo-Marrella-AAAI17, De-Leoni-Marrella-ESWA18]

FUTURE WORK

- A Knowledge Engineering Methodology to semi-automatically convert SOC and BPM problems to planning problems.
- Go beyond classical planning.

REFERENCES

[Acitelli-ICPM22] Acitelli, G., et al. (2022) Context-Aware Trace Alignment with Automated Planning. ICPM'22 [Alman-INFSYST22] Alman, A., Maggi, F. M., Montali, M., Peñaloza, R. (2022). Probabilistic declarative process mining. Inf. Syst. 109

[De-Giacomo-Vardi-IJCAI13] De Giacomo, G., and Vardi, M. Y. (2013). Linear Temporal Logic and Linear Dynamic Logic on Finite Traces. In Proc. of IJCAI'13.

[Dumas-ACMTMIS23] Dumas, M. et al. (2023) Al-augmented Business Process Management Systems: A Research Manifesto. ACM Trans. Manag. Inf. Syst. 14(1)

[Casciani-RCIS24] Casciani, A., Bernardi, M. L., Cimitile, M., Marrella, A. (2024). Conversational Systems for Al-Augmented Business Process Management. In Proc. of RCIS'24.

[Fox-Long-JAIRO3] Fox, M., Long, D. (2003) PDDL2.1: An extension to PDDL for expressing temporal planning domains. J. Artif. Intell. Res.(JAIR), vol. 20

[Geffner-M&C13] Geffner, H., Bonet, B. (2013). A Concise Introduction to Models and Methods for Automated Planning. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers.

[Marrella-JODS19] Marrella A. (2019). Automated Planning for Business Process Management (2019). Journal on Data Semantics, vol. 8

[van-der-Aalst-et-al-CS-R&D-09] van der Aalst, W.; Pesic, M.; and Schonenberg, H. 2009. Declarative Workflows: Balancing Between Flexibility and Support. Computer Science - R&D.

Automated Planning-as-a-Service Theory and Practice

Thanks for the attention