Once and for all:
how to compose modules -
the composition calculus

SummerSoc Thursday, June 27 2024

Institut far Informatik
Humboldt-Universitat zu Berlin

. .
Peter Fettke Wolfgang Reisig dfkl Deuteches
Forschungszentrum
@D ;u: Ifl't_'lnstliche
. ey ee ntelligenz
German Research Center Humbol dl;UT versitat A
for Artificial Intelligence sz‘ uBerin Intelligence
(DFKI) and Saarland ermany "@.@; UNIVERSITAT
University, Saarbriicken, “"uﬂﬂu“" DES

SAARLANDES

Germany :

Frank is smart.

Frank loves heavy math.

| love tiny, elegant math:
small amount of assumptions,

interesting consequences.

Prelude

Software Engineering: a historical perspective

1968 NATO Conference on Software Engineering,
Garmisch Partenkirchen

S

bridge the gap

Software Engineering: a historical perspective

1968 NATO Conference on Software Engineering,
Garmisch Partenkirchen

9
bridge the gap
Result: We need better better!

programming languages!

. . .
Not just FORTRAN, COBOL, Programming Paradigms Engineering!

ALGOL 60 logic programs Software Engineering
Monster Languages ALGOL 68, functional programs Requirements Engineering
PL/1, ADA object orientation Software life cycles

tiny ones Pascal, Simula

Software Engineering: a historical perspective

1968 NATO Conference on Software Engineering,
Garmisch Partenkirchen

;) > »
bridge the gap
Software design methods better!
waterfall model typical modeling techniques:
V-model
: ARIS BPMN CASL EPK FOCUS
spiral model

MSC STATECHARTS TLA UML Z
agile methods

model based ... construct a model before you start coding!

a broader view:
systems engineering

J@‘
L)
bridge the gap
better!
don’t model just the software, typical modeling techniques:
but the entire system!
How to model systems? ARIS BPMN CASL EPK FOCUS
. MSC STATECHARTS TLA UML Z
So, what is a good |
modeling technique?
... don’t really help! ystem

a general deficit of classical modeling

a good modell
e separates components

e talks about real world items
N and data

'} » formulates behavior

— ¢ refines and abstracts modules
as a dag, not a tree

... on any level of abstraction
... at any formal degree
as chosen by the modeler

a system

What a model is supposed to provide

with a model you can

* formulate and prove system properties
* assess complexity of behavior

* explain a system to stake holders

* estimate costs

* formulate agreements and orders

 specify functionalities and warranties

.

= |18 10
— —) ‘ |

a system

First assumptions .

THE MODEL

arc alﬁ dykamics >

THE WORLD

a system

Peter Fettke - Wolfgang Reisig
Understanding the Digital World
Modeling with Heraxur

Peter Fettke
Wolfgang Reisig

d - 9o

This book fills a serious gap by providing a conceptual framework for understanding
the digital world. This world contains large, heterogeneous systems that have to
manage dynamic behavior as well as static items and data. Obviously, new, digital
methods are needed to deal with the challenges of the digital world.

bisia

This book introduces such a method with HERAKLIT, an intuitively simple, albeit
powerful framework for modeling, communicating, and analyzing computer-
hodules, describing
pal- and imagined-
technically simple,

THE MODEL

their composition
ynamics, focusing
n static aspects. In
representation are
s are consolidated
Inework. The book
pical retail business,
hd useful graphical

els.

Understanding
the Digital World

Modeling with HerakuiT

pas for a computer-
s, the contributions
ction of software.
system modeling,
als in these fields.

today: only about architecture

—
(—
-=)
=
D
=
wv
—
Q
=)
S
=

(=]
~t
=28
D
=

=3
—
=B
o
e
o

ISBN 978-3-031-61897-0

97 0

83031([61897

» springer.com

@ Springer

Once and for all:
how to compose modules -
the composition calculus

What justifies this talk’s title ?

(i) Case studies in various domains

(ii) Innovative applications, e.g. large process models Next talk, Peter

(iii) Generality of the composition calculus

* A moduleis agraph. There is nothing more general than graphs.

* Aninterface is a set of vertices — labeled, ordered. Composition needs nothing more.
 Composition is technically simple —and total.

(iv) Mathematically deep and practically useful properties: This talk

1. Modules and Their Composition

o -0-0-» -0

> <& Carm
a graph
- 0O o

another graph

an interface with interface

composition:
o_,a _>° Merge equally labeled gates
along the order of the interfaces.

What to do with c and f?

°<— \ Go to the interface
.. another try
13

g —0-» -0—O0
é NG

O© @

o_ o« &

another graph

two interfaces with interface

composition:
o_,a _>° Merge equally labeled gates
along the order of the interfaces.

What to do with c and f?

°<— \ Go to the interface
.. another try
14

c \ \c<@ @
0o 0 .

two interfaces

composition:

oaaaaa

=

B0 -6® @>¢—>¢®

another module

two interfaces

Merge equally labeled gates
along the order of the interfaces.

What to do with c and f?
Go to the interface

.. another try

15

N e
e oy @ < .

another module

two interfaces two interfaces

composition:
b_,a _»é Merge equally labeled gates
@ along the order of the interfaces.

What to do with c and f?

°<— \ Go to the interface
... another try
16

N = O =
e "y @ < -

another module

two interfaces two interfaces

composition:

b ° _»é Merge equally labeled gates
@ along the order of the interfaces.

What to do with c and f?

°<_(§ \ Go to the interface
\sj— ... another try

17

SN \32 I
" 0<—0@ o

another module

two interfaces two interfaces

composition:

b_,a_, _>¢ Merge equally labeled gates
Ca) ™ |

@ along the order of the interfaces.

What to do with c and f?
°< \ (¢ Go to the interface

4—6 @ another try

'S

18

two interfaces: most natural

élmdh

Supplier
Raw Materials

L

Consumer

Customer

written:
RMeSueMaeDieCueCo

Manufacturing

Bo—r

Distribution

input

customer
requester
consumer

buy side

* predecessor and

e assumptions and

* pull
 left
etc.

and output,
and supplier,
and provider,
and producer,
and sell side,
successor,
guarantees,
and push,
and right,

19

2. Algebraic properties of modules
2.1 Associativity

Theorem Let L, M, and N be three modules. Then
(LeM)eN=Le(MeN).

Justwrite My e M, e ... oM .

2. Algebraic properties of modules
2.1 Associativity

L 2; BN

(-® O —0 O

SIS0

LM a .
@ —O fi&»"

Ul

(LeM)e+N Le(MsN)

@ —@»

o’ o’

2. Algebraic properties of modules
2.2 Cancelativity

M e N: like scrambled eggs, or like composed words over an alphabet?
Theorem Let L, M, N be modules.
fLeM=LeN,then M =N.

fMeL=NelL then M=N.

... hence, like words over an alphabet!

2. Algebraic properties of modules
2.3 Commutativity

When holds: M e N = N e M?

Theorem M ¢ N and N ¢ M are equivalent iff no label occurs

in the interfaces of M as well as in the interfaces of N.

useful for paramererized modules My, ..., M,

2. Algebraic properties of modules
2.3 Commutativity

== =4

1ede ded

:::i@ @i:.‘::i@

2. Algebraic properties of modules
2.3 Commutativity

I PC @aaa O PO
o)

not commuting: L---N and M---N. But commuting: (L ¢ M)---N

NeP @
®

2. Algebraic properties of modules

2.4 Equidivisibility

Assume Q=M e N = Ke L, not commuting

Q:

N

Then there exists a unique module P such that

Q=MePe|

3. Distinguished interfaces
3.1 General Modules

The module E =4 (@, @) is denoted as zero module
Lemma For each module M holds: M e E=E ¢ M = M.

Theorem Let Mod be the set of all modules over A.
Then mod(A) =4 (Mod, e, E) is a monoid.

Theorem Let A € A. Then mod(A) is a submonoid of mod(A).

3. Distinguished interfaces

3.2 Cyclic modules

Def.: (i) A module M is cyclic, if *M and M* are equivalent.

Let cyclic(\) denote the set of all cyclic modules over A.

Theorem cyclic(A\) is a submonoid of mod(A).

ORI\
U

el "

T

@aaqa@ il 1a &
%x\;\\>ﬁ\@

o_»MN%

W

28

3. Distinguished interfaces

3.3 Fixed interface modules
Def.: Let X be an interface over A. fixed(X): all modulesM with
b o -
 M as well as M equivalent to X.

Theorem fixed(A) is a submonoid of cyclic(\).

CONEPAIG SONCS
TN 0 e

7

(- eeo@ (3>

o) (o o
0 @O\OH?@ 0

4. Distinguished interior
4.1 Alphabet modules

> =A{a, ..., 2}

le -0 -¢0 ¢ -0 -0 (¢ .0 ¢

the free monoid of words over 2,
formal languages,
conventional informatics.

30

4. Distinguished interior
4.2 submodules

a graph ...

P i O

i

\ /aao/

4. Distinguished interior
4.2 submodules

a submodule,H no more a submodule

/

@\e/

™~

o o
9/0%{@
—

h

4. Distinguished interior
4.2 submodules

the complement modul of H

G

b
\ comp(H)

0 0O

0
Teed

4. Distinguished interior
4.3 initial and final submodules

module M M
©

}3—9—%0 /

I -

O
o - \q

4. Distinguished interior
4.3 initial and final submodules

module M M

©
b\@

4. Distinguished interior
4.3 initial and final submodules

module M M
a cut
an initial module init(M)

4. Distinguished interior
4.3 initial and final submodules

module M

a cut

an initial module
a final module

M=
init(M) « final(M)

init(M) final(l\:)L

37

4. Distinguished interior
4.4 Adapters

5. Miscellaneous

single modules classes of modules
shared gates finitely generated classes
perfect matches domain specific classes
atomic modules Petri net modules

abstract modules
reverse interface
hierarchies

h Once and for all:
ow to compose modules -
the composition calculus

SummerSoc Thursday, June 27, 2024

« Composition calculus: not just another composition operator.

. A fundamental basis for any composition principle. it's never
1o (s
: : oy - us! |
. There are more algebraic properties worth considering, compostion Cilj\ui RS
c . 5 - c Intelli
in particular concerning hierarchies and submodules. German Research
Center for Artificial
Intelligence
« Best practice concepts such as adapters and domain specific Mﬁﬁ“" UNIVERSITAT
] DES
SAARLANDES

subcalculi are under consideration.

