
Wolfgang Reisig

Humboldt-Universität
zu Berlin
Germany

Peter Fettke

German Research Center
for Artificial Intelligence

(DFKI) and Saarland
University, Saarbrücken,

Germany 1

SummerSoc Thursday, June 27 2024

Once and for all:
how to compose modules -

the composition calculus

Frank is smart.
Frank loves heavy math.

I love tiny, elegant math:
small amount of assumptions,
interesting consequences.

2

Prelude

3

Software Engineering: a historical perspective
1968 NATO Conference on Software Engineering,

Garmisch Partenkirchen

bridge the gap

4

1968 NATO Conference on Software Engineering,
Garmisch Partenkirchen

Engineering!
Software Engineering
Requirements Engineering
Software life cycles

bridge the gap
better!

Software Engineering: a historical perspective

Programming Paradigms
logic programs
functional programs
object orientation

Result: We need better
programming languages!
Not just FORTRAN, COBOL,
ALGOL 60
Monster Languages ALGOL 68,
PL/1, ADA
tiny ones Pascal, Simula

5

1968 NATO Conference on Software Engineering,
Garmisch Partenkirchen

Software design methods
waterfall model
V-model
spiral model
agile methods
model based …

bridge the gap
better!

Software Engineering: a historical perspective

construct a model before you start coding!

bridge the gap
better!

typical modeling techniques:

ARIS BPMN CASL EPK FOCUS
MSC STATECHARTS TLA UML Z

6

a broader view:
systems engineering

a system

don‘t model just the software,
but the entire system!

How to model systems?

So, what is a good
modeling technique?

bridge the gap
better!

typical modeling techniques:

ARIS BPMN CASL EPK FOCUS
MSC STATECHARTS TLA UML Z

... don’t really help!

… either from the perspective of computing
or remains informal

7

a good modell
• separates components
• talks about real world items

and data
• formulates behavior
• refines and abstracts modules

as a dag, not a tree
… on any level of abstraction
… at any formal degree
as chosen by the modeler

a systema system

a general deficit of classical modeling

8

with a model you can
• formulate and prove system properties
• assess complexity of behavior
• explain a system to stake holders
• estimate costs
• formulate agreements and orders
• specify functionalities and warranties

a system

What a model is supposed to provide

9

First assumptions …

a system

10

today: only about architecture

What justifies this talk’s title ?
(i) Case studies in various domains
(ii) Innovative applications, e.g. large process models Next talk, Peter
(iii) Generality of the composition calculus
• A module is a graph. There is nothing more general than graphs.
• An interface is a set of vertices – labeled, ordered. Composition needs nothing more.
• Composition is technically simple – and total.
(iv) Mathematically deep and practically useful properties: This talk

11

Once and for all:
how to compose modules -

the composition calculus

1. Modules and Their Composition

12

k

j

d

e

f

13

g h

i

a

b

c
a graph

an interface

α

α

α
another graph

with interface

α

α

β

 g h a

b

ci

d

e

k

f j

composition:
Merge equally labeled gates
along the order of the interfaces.

What to do with c and f?
Go to the interface

... nice, but defective: (A • B) • C ¹ A • (B • C)... another try

k

j

d

e

f

14

another graph

with interface

α

α

β

 g h a

b

ci

d

e

k

f j

composition:
Merge equally labeled gates
along the order of the interfaces.

What to do with c and f?
Go to the interface

... another try

g h

i

a

b

c
a module

two interfaces

α

α

α

α

15

 g h a

b

ci

d

e

k

f j

composition:
Merge equally labeled gates
along the order of the interfaces.

What to do with c and f?
Go to the interface

g h

i

a

b

c
a module

two interfaces

α

α

α

α

k

j

d

e

f

another module

two interfaces

α

α

β

α

... another try

16

Merge equally labeled gates
along the order of the interfaces.

What to do with c and f?
Go to the interface

g h

i

a

b

c
a module

two interfaces

α

α

α

α

k

j

d

e

f

another module

two interfaces

α

α

β

α

 g h a

b

ci

d

e

k

f j

composition:

α α

... another try

 g h a

b

ci

d

e

k

f j

composition:

k

j

d

e

f

g h

i

a

b

c

17

a module

two interfaces

α

α

α
another module

two interfaces

α

α

β

Merge equally labeled gates
along the order of the interfaces.

What to do with c and f?
Go to the interface

α α

α α

c

f ... another try

 g h a

b

ci

d

e

k

f j

composition:

k

j

d

e

f

g h

i

a

b

c

18

a module

two interfaces

α

α

α
another module

two interfaces

α

α

β

Merge equally labeled gates
along the order of the interfaces.

What to do with c and f?
Go to the interface

α α

α α

c

f

β
α... another try

two interfaces: most natural

• input and output,
• customer and supplier,
• requester and provider,
• consumer and producer,
• buy side and sell side,
• predecessor and successor,
• assumptions and guarantees,
• pull and push,
• left and right,
etc.

written:
RM • Su • Ma • Di • Cu • Co

19

2. Algebraic properties of modules

Theorem Let L, M, and N be three modules. Then
(L • M) • N = L • (M • N).

Just write M1 • M2 • . . . • Mn .

20

2.1 Associativity

21

L
aα

N
d

e α

β

L • M
{a, b} c

β

M • N
{c, d}

e

b
α

α

(L • M) • N
{a, b} {c, d}

e α

L • (M • N)
{a, b} {c, d}

e α

2. Algebraic properties of modules
2.1 Associativity

b c

α

β

=

M • N: like scrambled eggs, or like composed words over an alphabet?

Theorem Let L, M, N be modules.
If L • M = L • N, then M = N.
If M • L = N • L, then M = N.

... hence, like words over an alphabet!

22

2. Algebraic properties of modules
2.2 Cancelativity

When holds: M • N = N • M?

Theorem M • N and N • M are equivalent iff no label occurs
in the interfaces of M as well as in the interfaces of N.

useful for paramererized modules M1, . . . , Mn

23

2. Algebraic properties of modules
2.3 Commutativity

24

2. Algebraic properties of modules
2.3 Commutativity

M
a b c

βα N
d e f γγ

M • N

a b f

d e c

α

γ

γ

β

N • M
d e c

a b f

γ

α

β

γ

 a b c

d e f

α

γ

β

γ

 d e f

a b c

γ

α

γ

β

25

2. Algebraic properties of modules
2.3 Commutativity

not commuting: L---N and M---N. But commuting: (L • M)---N

L
a b

α β
c d

αβ

P = L • M
{b,c} d

α
a

α

P • N
{b,c} fa

e d
α

α β

β

N
e f

β

β N • P

{b,c}

de

a f

αα

β
β

Assume Q = M • N = K • L, not commuting

26

2. Algebraic properties of modules
2.4 Equidivisibility

NM

K L

Then there exists a unique module P

P

such that
Q = M • P • L

Q: Q

M • N

refine

K • L

refine

M • P • L

refinerefine

27

3. Distinguished interfaces
3.1 General Modules

The module E =def (∅, ∅) is denoted as zero module

Lemma For each module M holds: M • E = E • M = M.

Theorem Let Mod be the set of all modules over Λ.
Then mod(Λ) =def (Mod, •, E) is a monoid.

Theorem Let Δ ⊆ Λ. Then mod(Δ) is a submonoid of mod(Λ).

28

3. Distinguished interfaces
3.2 Cyclic modules

Def.: (i) A module M is cyclic, if *M and M* are equivalent.
Let cyclic(Λ) denote the set of all cyclic modules over Λ.

Theorem cyclic(Λ) is a submonoid of mod(Λ).

M

d f

g

he

α

α
a

b

c β

α

α

β

N

k

l

m

i

j γ

α

γ

α
M • N

 d f

h
e

i l

g

a

b

c

j

m

k

α

α

α

α

β

γ

γ

β

29

3. Distinguished interfaces
3.3 Fixed interface modules

Def.: Let X be an interface over Λ. fixed(X): all modules M with
• M = E or
• *M as well as M* equivalent to X.

Theorem fixed(Λ) is a submonoid of cyclic(Λ).

M

d f

g

he

α

α
a

b

c β

α

α

β

N

i

j

k

l

m

l

α

α

β

α

α

β

M

d f

g

e

a

b

c

i

j

l

m

 h k l

α

α

β

α

α

β

30

4. Distinguished interior
4.1 Alphabet modules

Σ = {a, ..., z}

Ma

a
!

! ... Mz

z
!!

Mb

b
!!

the free monoid of words over Σ,
formal languages,
conventional informatics.

31

4. Distinguished interior
4.2 submodules

a graph …

G
j

a
b

c

d

f

e

k

i g

h

32

4. Distinguished interior
4.2 submodules

a submodule, H

G

H

j

a
b

c

d

f

e

k

i g

h

α

αα

no more a submodule

33

4. Distinguished interior
4.2 submodules
the complement modul of H

G

comp(H)
j

a

b

c

d

f

e

k

i g

h α

αα

34

M

j
a

b

c

d

f

e

k

ig

h

l

4. Distinguished interior
4.3 initial and final submodules

module M

35

M

j
a

b

c

d

f

e

k

ig

h

l

4. Distinguished interior
4.3 initial and final submodules

module M
a cut

36

M

init(M)

j
a

b

c

d

f

e

k

ig

h

l

4. Distinguished interior
4.3 initial and final submodules

module M
a cut
an initial module

37

M

final(M)init(M)

j
a

b

c

d

f

e

k

ig

h

l

4. Distinguished interior
4.3 initial and final submodules

module M
a cut
an initial module
a final module

M =
init(M) • final(M)

38

4. Distinguished interior
4.4 Adapters

M

α

α

α

β

N

α

α

β

α

adapter

 β

α

α

α

α

α

M

α

α

α

β

N

α

α

β

α

39

5. Miscellaneous

single modules
shared gates
perfect matches
atomic modules
abstract modules
reverse interface
hierarchies

classes of modules
finitely generated classes
domain specific classes
Petri net modules

Wolfgang Reisig

Humboldt-Universität
zu Berlin
Germany

Peter Fettke

German Research Center
for Artificial Intelligence

(DFKI) and Saarland
University, Saarbrücken,

Germany 40

SummerSoc Thursday, June 27, 2024

Once and for all:
how to compose modules -

the composition calculus

• Composition calculus: not just another composition operator.

• A fundamental basis for any composition principle.

• There are more algebraic properties worth considering,

in particular concerning hierarchies and submodules.

• Best practice concepts such as adapters and domain specific

subcalculi are under consideration.

it’s never too late

to start using the

compostion calculus!

