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Motivation

= Get stuck in a local minimum instead of a global minimum
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Motivation

= Features of the Cost Landscape:

Local optima
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Motivation

= Likelihood of being a saddle point increases with the number of dimensions
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Motivation

= Features of the Cost Landscape:

Local optima Saddle points
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Motivation

= Many points on the flat area, where the gradient is zero or close to zero,
providing no guidance

— Bad starting points for optimization
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Motivation

= Features of the Cost Landscape:

)

W Local optima
—

)

—— | Barren plateaus

Saddle points

Narrow gorges
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Background — Frequency

= The likelihood of suboptimal solutions increases with the frequency of each

feature
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Background — Gradient Behavior

Optimizer is not able to navigate in an improving direction
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Background — Curvature

Optimizer has to adapt step size based on the size of the feature
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Metrics — Overview

Total Variation

= Fourier Density

= |nverse Gradient Standard Deviation

=  Scalar Curvature
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Metrics — Total Variation

= Total Variation (T'V) captures how much a function varies across a finite domain

TV(C) = j vC(8)|d8

—

0eA

where VC is the gradient of the cost function

= High TV values = rough landscape

= Low TV values = flat areas

=
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Metrics — Fourier Density

Fourier Density (FD) is defined as the number of nonzero Fourier coefficients

FD(C) = ol

EAE

where ¢, is a vector of Fourier coefficients, ||-||,, is the p-Norm

High FD values = sharp transitions

Low FD values -2 less rough landscape

W i

19



Metrics — Fourier Density

= Fourier Density (FD) is defined as the number of nonzero Fourier coefficients

FD(C) = ol

EAE

where ¢, is a vector of Fourier coefficients, ||-||,, is the p-Norm

= High FD values = sharp transitions
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= Low FD values - less rough landscape

= Low TV values & high FD values = indicator for barren plateaus, narrow gorges
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Metrics — Inverse Gradient Standard Deviation

" |nverse Gradient Standard Deviation (IGSD;) describes the variation of the
gradient values from the gradient mean in the i-th direction given by

1
sp (9;¢(8))

with SD is the standard deviation and 0, is the derivative of the cost function

* High IGSD; values - flat areas

* Low IGSD; values - high dispersion of values

=
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Metrics — Scalar Curvature

Scalar Curvature (SC) is defined as
sc(p,C) = B (Tr(HC(P))Z — Tr(H? (P))) -+
27 (VCT(P) (HZ(P) — Tr(Hc(P))Hc (P)VC(P)))

with B = (1 + ||[VC(P)||?)~%, P point on the landscape, VC Gradient of C and
H. is the Hessian of C
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= SC(P,C) >0 - local optimum
= SC(P,C) <0 - saddle point
= SC(P,C) =0 > flat

=
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Use Case — Solving the Maximum Cut Problem

= The maximum cut problem is to partition the node set of a graph into two sets
such that the number of edges between nodes of the different sets is maximal

OO
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Use Case — Solving the Maximum Cut Problem

= The maximum cut problem is to partition the node set of a graph into two sets
such that the number of edges between nodes of the different sets is maximal
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Use Case — Solving the Maximum Cut Problem

= The maximum cut problem is to partition the node set of a graph into two sets
such that the number of edges between nodes of the different sets is maximal
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Use Case — Results
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Use Case — Results

= With increasing number of nodes, the margins get flatter and the cost landscape
concentrates in the center

—> Less local optima
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Use Case — Results

= The progression of FD values from 25.07 to 210.19 indicates a steepening of the
cost landscape

— Cancellation of most of the frequencies

0 2 4 § 0 32
h Iy

FD =25.07 FD =179.88 FD =210.19

L
O . . .
§ size =3 size =6 size=12
g
0.3 0.3
§ 02
- 0.2 0.2
2
01 2
0.1 0.1
; 0
0
0 32
Iy

28




Use Case — Results

=  With increasing number of vertices the landscape gets flatter and the local
optima become steeper
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Conclusion & Future Work

= Conclusion:

= |dentification of obstacles in the optimization process

= Qverview of different metrics and their interplay

"  Future Work:
= Development of new metrics

" |nclude these metrics in the classical optimization process

Thank you for your attention ©
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