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Motivation

▪ Get stuck in a local minimum instead of a global minimum
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Motivation

▪ Features of the Cost Landscape:

Local optima
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Motivation

▪ Likelihood of being a saddle point increases with the number of dimensions
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Motivation

▪ Features of the Cost Landscape:

Local optima                                         Saddle points
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Motivation

▪ Many points on the flat area, where the gradient is zero or close to zero, 
providing no guidance

→ Bad starting points for optimization
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▪ Features of the Cost Landscape:

Local optima                                         Saddle points

Barren plateaus                                    Narrow gorges                   

Motivation
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Background – Frequency

▪ The likelihood of suboptimal solutions increases with the frequency of each
feature
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Background – Gradient Behavior

▪ Optimizer is not able to navigate in an improving direction
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Background – Curvature

▪ Optimizer has to adapt step size based on the size of the feature
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Background
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Background
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Frequency Gradient Behavior Curvature

Metrics
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▪ Total Variation

▪ Fourier Density

▪ Inverse Gradient Standard Deviation

▪ Scalar Curvature

Metrics – Overview
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Metrics – Total Variation

▪ Total Variation (𝑇𝑉) captures how much a function varies across a finite domain

where ∇𝐶 is the gradient of the cost function

▪ High 𝑇𝑉 values → rough landscape

▪ Low 𝑇𝑉 values → flat areas
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𝑇𝑉 𝐶 = න
θ∈𝐴

∇𝐶 θ 𝑑θ
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Metrics – Fourier Density

▪ Fourier Density (𝐹𝐷) is defined as the number of nonzero Fourier coefficients 

𝐹𝐷 𝐶 = Ԧ𝑐𝜔 1
2

Ԧ𝑐𝜔 2
2

where Ԧ𝑐𝜔 is a vector of Fourier coefficients, ∙ 𝑝 is the 𝑝-Norm

▪ High 𝐹𝐷 values→ sharp transitions 

▪ Low 𝐹𝐷 values → less rough landscape
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Metrics – Fourier Density

▪ Fourier Density (𝐹𝐷) is defined as the number of nonzero Fourier coefficients 

𝐹𝐷 𝐶 = Ԧ𝑐𝜔 1
2

Ԧ𝑐𝜔 2
2

where Ԧ𝑐𝜔 is a vector of Fourier coefficients, ∙ 𝑝 is the 𝑝-Norm

▪ High 𝐹𝐷 values→ sharp transitions 

▪ Low 𝐹𝐷 values → less rough landscape

▪ Low 𝑇𝑉 values & high 𝐹𝐷 values → indicator for barren plateaus, narrow gorges
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Metrics – Inverse Gradient Standard Deviation

▪ Inverse Gradient Standard Deviation (𝐼𝐺𝑆𝐷𝑖) describes the variation of the
gradient values from the gradient mean in the 𝑖-th direction given by

𝐼𝐺𝑆𝐷𝑖 𝐶 =
1

𝑆𝐷 𝜕𝑖𝐶 θ

with 𝑆𝐷 is the standard deviation and 𝜕𝑖 is the derivative of the cost function

▪ High 𝐼𝐺𝑆𝐷𝑖 values → flat areas

▪ Low 𝐼𝐺𝑆𝐷𝑖 values → high dispersion of values
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Metrics – Scalar Curvature

▪ Scalar Curvature (𝑆𝐶) is defined as

𝑆𝐶 𝑃, 𝐶 = 𝛽 𝑇𝑟 𝐻𝐶 𝑃
2
− 𝑇𝑟(𝐻𝐶

2 𝑃) +

2𝛽2 ∇𝐶𝑇 𝑃 𝐻𝐶
2 𝑃 − 𝑇𝑟 𝐻𝐶 𝑃 𝐻𝐶 𝑃 ∇𝐶 𝑃

with 𝛽 = (1 + ∇𝐶(𝑃) 2)−1, 𝑃 point on the landscape, ∇𝐶 Gradient of 𝐶 and     
…..𝐻𝐶 is the Hessian of 𝐶

▪ 𝑆𝐶 𝑃, 𝐶 > 0 → local optimum

▪ 𝑆𝐶 𝑃, 𝐶 < 0 → saddle point

▪ 𝑆𝐶 𝑃, 𝐶 = 0 → flat
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Use Case – Solving the Maximum Cut Problem

▪ The maximum cut problem is to partition the node set of a graph into two sets 
such that the number of edges between nodes of the different sets is maximal
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Use Case – Solving the Maximum Cut Problem

▪ The maximum cut problem is to partition the node set of a graph into two sets 
such that the number of edges between nodes of the different sets is maximal
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Use Case – Results

26
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Use Case – Results

▪ With increasing number of nodes, the margins get flatter and the cost landscape
concentrates in the center

→ Less local optima
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size = 3                                        size = 6                                        size = 12

𝑇𝑉 = 4.12 𝑇𝑉 = 3.80 𝑇𝑉 = 1.83
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Use Case – Results

▪ The progression of 𝐹𝐷 values from 25.07 to 210.19 indicates a steepening of the
cost landscape

→ Cancellation of most of the frequencies
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size = 3                                        size = 6                                        size = 12

𝐹𝐷 = 25.07 𝐹𝐷 = 179.88 𝐹𝐷 = 210.19
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Use Case – Results

▪ With increasing number of vertices the landscape gets flatter and the local
optima become steeper

𝐼𝐺𝑆𝐷𝛾 = 0.94

𝐼𝐺𝑆𝐷𝛽 = 0.85

𝐼𝐺𝑆𝐷𝛾 = 4.02

𝐼𝐺𝑆𝐷𝛽 = 3.38

𝐼𝐺𝑆𝐷𝛾 = 1.93

𝐼𝐺𝑆𝐷𝛽 = 1.77 29

size = 3                                                                      size = 6

size = 12
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Conclusion & Future Work

▪ Conclusion:

▪ Identification of obstacles in the optimization process

▪ Overview of different metrics and their interplay

▪ Future Work:

▪ Development of new metrics

▪ Include these metrics in the classical optimization process

Thank you for your attention ☺
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