

21-06-25 | 1

Sustainability at Scale

dr. Brian Setz (<u>b.setz@rug.nl</u>) University of Groningen, Digital Lab SummerSOC 2025

Who am I?

> Brian Setz, Head of the Digital Lab @ UG

· PhD in Computer Science, Universität Stuttgart

- Sustainability
 - HERTZ & eDIANA, energy efficient buildings (2011)
 - UG GreenMind Awards (2012, 2014)
 - SURFsara Sustainability & ICT grant (2015)
 - Founding shareholder Sustainable Buildings B.V. (2016)
 - NWO NextGenSmartDC, smart data centers (2016-2022)
 - LEAF (2024) + GreenDiSC (2025) Accreditation for Digital Lab, 1
 UG

Residential

Offices

Data Centers

Cloud

Green DiSC, **Di**gital **S**ustainability **C**ertification (2025)

A guidebook for sustainability in laboratories

T. Freese,^{*,#,a} R. Kat,^{#,b} S. D. Lanooij,^{#,b} T. C. Böllersen,^{#,a} C. M. De Roo,^a N. Elzinga,^c M. Beatty,^{a,d} B. Setz,^e R. R. Weber,^a I. Malta,^c T. B. Gandek,^f A. M. Krikken,^g P. Fodran,^f R. Pollice,^a M. M. Lerch^{*,a}

Version 1.3

Green Labs RUG – April 2024 Faculty of Science and Engineering, University of Groningen

A Quick Recap

SUSTAINABILITY

Paris Agreement

> In 2015, ~200 nations agreed to limit global warming to 1.5degC by 2030

The three degrees world

> On track for a 3degC increase

Global greenhouse gas emission nathways

Year

What about IT? Are we doing better?

> World Bank Report (2024)

university of groningen

Electricity consumption (TWh)

GenAI "Boom" of 2023

Supporting Education in Digital World

DIGITAL LAB

Who are we?

 Innovation by modernizing the university's curriculum through the design and development of a digital tool suite that supports *education* activities and enables scalability of courses through automation.

- > From 19 supported courses in 2023 to 55 courses in 2025
- > Services:
 - Themis, automated assessment of programming assignments
 - Repository Management, organization of student source code repositories
 - Virtual Labs, compute resources for students

university of groningen			▼ 🐴 Judge	ement #0			
			Started: Duration:	Wed Sep 18 2024 20:09:19 GMT+0200 8 sec 335.000 ms			
Themis		1 Submit	1	 ✓ Passed 1 Point Test files: < <u>Input</u> ✓ <u>Expected output</u> > <u>Your output</u> <u>Error output</u> ≈ <u>Difference</u> ■ Resource Usage 			
		You can upload mu	2-valgrind	 ✓ Passed 1 Point Test files: < Input ✓ Expected output > Your output Error output ≓ Difference ■ Resource Usage ⊕ 			
	Submission: <u>Comparing grades /</u> <u>Practical 2</u>			 ✓ Passed 1 Point Test files: < Input ✓ Expected output > Your output Error output 			
Comparing grades	Matter and antimatter	Rules of Acquisition	r 4	✓ Passed 1 Point Test files:			
<u>Timeout: 18.00</u>	★ <u>Runtime error: 20.00</u>	 Wrong output: 4.00 		 			
 <u>Timeout: 10.00</u> <u>Passed: 50.00</u> 	None Passed: 25.00 	 Wrong output: 4.00 Passed: 35.00 	5	Test files: २४ < Input २४ ✓ Expected output २४ > Your output २१ ! Error output २१ ≓ Difference			
 Missed deadline: 50.00 Passed: 50.00 	None ✓ Passed: 25.00	None Passed: 35.00 		■ Resource Usage Passed 1 Point Test files:			
 <u>Passed: 50.00</u> <u>Passed: 50.00</u> 	★ Wrong output: 22.00 ★ Wrong output: 20.00	 <u>Passed: 35.00</u> <u>Passed: 35.00</u> 	Ů				
 Wrong output: 2.00 Passed: 50.00 	X Wrong output: 22.00	 Passed: 35.00 Wrong output: 	Ca	arbon footprint of			
Passed: 50.00 Timeout: 10.00	× Wrong output: 11.00	 ✓ <u>Passed: 35.00</u> ✓ Passed: 35.00 	as	awareness			
Passed: 50.00	ℜ Runtime error: 12.00	✓ <u>Passed: 35.00</u>					
Passed: 50.00	Runtime error: 23.00	✓ Passed: 35.00		✓ Passed Trest files:			

Virtual Lab, a cloud-native approach to labs

Virtual Lab at Scale

21-06-25 | 16

Lars Andringa, Brian Setz, and Vasilios Andrikopoulos. 2025. Understanding the Energy Consumption of Cloud-native Software Systems. In Proceedings of the 16th ACM/SPEC International Conference on Performance Engineering (ICPE '25). Association for Computing Machinery, New York, NY, USA, 309–319. https://doi.org/10.1145/3676151.3719371

ICPE2025, Artifacts Available

UNDERSTANDING THE ENERGY CONSUMPTION OF CLOUD-NATIVE SOFTWARE SYSTEMS

Research Questions

- > What is the relation between load and energy consumption in typical cloudnative applications across different abstraction layers?
 - How can cloud-native applications' energy consumption be observed using existing solutions?
 - What level of accuracy can an observability stack achieve in terms of energy estimation?

Layers of Abstraction

RU = Resource Usage EC = Energy Consumption

21-06-25

Tool	BM		OS		VM		K8s		Арр	
	RU	EC	RU	EC	RU	EC	RU	EC	RU	EC
Prometheus Node Exporter	\checkmark	\checkmark	X	X	\checkmark	X	X	X	X	X
Telegraf	\checkmark	\checkmark	\checkmark	X	\checkmark	×	\checkmark	X	~	X
OProfile	X	X	X	X	×	×	X	X	X	X
Linux top	×	X	X	X	×	×	×	X	X	X
Linux sar	X	X	X	X	×	×	X	X	X	X
Linux dstat	X	X	×	X	X	×	X	X	×	X
Glances	\checkmark	X	X	X	\checkmark	×	X	X	X	X
Monasca	\sim	X	\checkmark	X	X	X	\checkmark	X	X	X
Ceilometer	~	X	\checkmark	X	×	×	×	×	X	X
OpenStack-Exporter	X	X	\checkmark	X	×	×	X	X	X	X
cAdvisor	X	X	×	X	X	×	\checkmark	X	×	X
Kube State Metrics	X	X	X	X	X	X	X	X	×	X
Kubernetes Metrics Server	X	X	X	X	X	×	\checkmark	X	X	×
Prometheus Kubernetes Agent	X	X	×	X	X	X	\checkmark	X	×	×
Resource Metrics API	X	X	X	×	X	X	×	X	×	×
Kepler	X	X	X	×	×	\checkmark	X	\checkmark	×	X
Scaphandre	\checkmark	\checkmark	X	X	\checkmark	\checkmark	X	\checkmark	X	X
Jeager	\checkmark	\checkmark	~	X	\checkmark	X	\checkmark	X	\checkmark	X
Prometheus	~	~	\checkmark	X	\checkmark	~	\checkmark	\checkmark	~	X

Software

Ż

university of groningen

Orchestration (Kubernetes)

VM (QEMU)

OpenStack

Bare Metal

Tool Selection

Resource Usage Energy Consumption

Software	Open Telemetry	none available!			
Orchestration (Kubernetes)	cAdvisor	Kepler			
VM (QEMU)	node_exporter	Scaphandre			
OpenStack	none worked!	none available!			
Bare Metal	node_exporter	RAPL			

RAPL

- > Running Average Power Limit (RAPL), designed by Intel & adopted by AMD
- Original purpose: balance performance vs. efficiency by enforcing limits

> Package

- > Core
- > Uncore
- > DRAM

ř.

university of groningen

- > Energy Consumption Metrics Agent
 - Bare Metal
 - Virtual Machines (from host)
- Exposes host metrics to VM

Kepler

- > Kubernetes Efficient Power Level ExporteR (Kepler)
 - Energy consumption of pods and nodes

Naïve consumption mapping $VM_Energy_Consumption = BM_Energy_Consumption \cdot \frac{VM_CPU_Utilization}{BM_CPU_Utilization}$

tilization

 $Pod_Energy_Consumption = VM_Energy_Consumption \cdot \frac{Pod_CPU_Utilization}{VM\ CPU\ Utilization}$

ÿ

university of groningen

> Intel(R) Xeon(R) Gold 6780E, 2.20GHz, 144 Cores

System Under Test

What data did we collect?

> Physical

university of groningen

- Energy Consumption (Bare Metal + Networking)
- Bare Metal
 - Energy Consumption (RAPL)
 - CPU, Mem, Disk
- > Virtual Machine
 - Energy Consumption (Scaphandre)
 - CPU, Mem, Disk
- > Kubernetes
 - Energy Consumption (Kepler)
 - CPU, Mem, Disk
- > Application
 - Requests

Experiments

› Constant Load

university of

- 6 different levels of constant load on the application
- No autoscaling
- › Linear Load
 - Linear scaling of load on the application
 - With horizontal pod autoscaling

› Direct Load

- Run pods with an exact load (200 mCPU)
- With linear scaling by spawning more pods

⁽b) Power plugs.

Blue = VM mapping Green = Scaphandre

(b) Direct dataset.

How accurate is Kepler using Power Model?

ÿ

university of groningen

⁽b) Direct dataset.

Findings

- > We have the tools for multi-layer monitoring of cloud-native environments!
- > But, the tools for energy estimations are inaccurate
 - Especially RAPL, and Kepler
- > Monitoring stack functions on private clouds, but what about public clouds?
- > More research needed into Kepler

Bjorn Pijnacker, Brian Setz, and Vasilios Andrikopoulos. 2025. Container-level Energy Observability in Kubernetes Clusters. arXiv preprint arXiv:2504.10702. <u>https://arxiv.org/abs/2504.10702</u>

ICT4S 2025

CONTAINER-LEVEL ENERGY OBSERVABILITY IN KUBERNETES CLUSTERS

Research Question

- > Previous work showed anomalies in the data produced by Kepler
- We have not found a systematic evaluation of Kepler's accuracy beyond an initial evaluation
- > Despite this, Kepler is used in a number of publications

How can we accurately estimate the power usage of Kubernetes containers based on external measurements?

Experiment Design


```
KEPLER
```

Stressor Pod	Idle Pod	Idle Pod	Idle Pod	Idle Pod			
Stress	Idle						
Kubarnatae Namaenaeae							

Kubernetes Namespaces

How accurate is Kepler using BM data?

Time

All is well then?

Experiment #2

Idle has 64 inactive pods, at t=200, inactive pods are deleted

After t=200, stress power attribution drops, system power attribution increases

university of groningen

KubeWatt

- Proof of concept to determine if Kepler's shortcomings are inherent to the problem
 Static Power
 - Dynamic Power
 - Dynamic Power
- Init modes to determine <u>static power + train</u> power model
 - Empty cluster
 - Over a period of time collect utilization an power draw
 - Existing cluster
 - Collect utilization and power draw until reaching enough variability (20-80% CPU usage)

https://github.com/bjornpijnacker/kubewatt

Power Model

university of

- Init mode: existing cluster
 - Data gathering, 3.5h to 13h until enough variability in the data
 - Static power estimated at 198.44 W
 - iDRAC reported 199.1W
 - R2 = 0.92

 After fitting a linear model we no longer need iDRAC data!

Take-home message

WHAT IS NEXT?

21-06-25 | 44

Conclusion

- Set out to build a monitoring stack using existing technology aimed at large scale cloud-native deployments to bring <u>awareness</u> to end-users
- > Key technology exists but has critical flaws
 - RAPL, inaccurate, wrong scaling

How can we achieve true full-stack energy monitoring of cloud-native applications on public and private clouds?

- Proposed KubeWatt, but only solves a small part of the puzzle (k8s)
- > Evaluated on "private clouds", full BM access, what about public clouds?