
Making

Composition Calculus

Great Again

Dominic Zimmer
dependable systems and software

Saarland University, Saarbrücken

assisted by Holger Hermanns

Making

Composition Calculus

Great Again

Dominic Zimmer
dependable systems and software

Saarland University, Saarbrücken

assisted by Holger Hermanns

Stochastic models

Estimate throughput of manufacturing systems.

Locate bottlenecks in communication systems.

Assess dependability of satellite systems.

Calculate performance of cloud infrastructures.

Plan attacks on cryptoconcurrencies.

And many other things.

What are they good for?

Stochastic models

bubbles

arrows

Their ingredients?

2 3

labels

of bubbles

of arrows

1

 



bubbles: states

arrows: transitions

Customers arrive at a certain frequency,

say approximately 1 customer per five minutes.

Service requires, say, three minutes.

At most six customers can wait at the counter.

At the pool bar of Mitsis Royal Mare

10





2





4





3





5





6







arrival rate  = 1/5 min

service rate  = 1/3 min

What is this?

10





2





4





3





5





6







A stochastic process

More precise: A Markov chain

Again more precise: A finite homogeneous

continuous-time Markov chain

The gambler rolls a die

every minute.

She comes back once

the die shows 6.

When will she be back?

At the door of a gambler

When will she be back, under the assumption that

she is not back after 10 minutes?

Is the gambler still absent?

P
ro

b
a

b
ili

ty

And what if the gambler is still

gambling at time t =10 ?

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Is the gambler still absent?

P
ro

b
a

b
ili

ty

And what if the gambler is still

gambling at time t =10 ?

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Is the gambler still absent?

P
ro

b
a

b
ili

ty

And what if the gambler is still

gambling at time t =10 ?

Probabilities remain unchanged

The die has no memory!

P
ro

b
a

b
ili

ty

time t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Relation to Markov chains

homegambling

5/6
1/6

This Markov chain describes the gambler’s behaviour.

Markov chains have no memory

of the time spent in their states. They are memoryless.

Btw:

The above Markov Chain runs in discrete time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ro

b
a

b
ili

ty

Discrete time, no memory

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ro

b
a

b
ili

ty

Continuous time, no memory

Stochastic models are usually developed in
continuous time.

𝑃 𝑋 > 𝑡 = 𝑒−𝜈𝑡

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Continuous-time Markov chains

Automata.

All durations

exponentially distributed.

Sojourn times in states

memoryless.

Very well investigated

class of stochastic

processes.

Widely used out there.

Best guess, if only

mean values are

known.

Efficient and

numerically stable

algorithms available.

Continuous time, but memory

and many, many others.

Actually: Absence of memory is rare, though natural.

But: It makes life simpler. (Here: modelling and analysis).

And: Bitcoin mining is memoryless.

Stoichiometry is memoryless.

…

Memoryless Distributions Unleashed

Absorption time distribution in an acyclic CT Markov Chain.

Acyclic Phase Type Distributions

Absorption time distribution in an acyclic CT Markov Chain.

Topologically dense.

Acyclic Phase Type Distributions

Absorption time distribution in an acyclic CT Markov Chain.

Topologically dense:

Can approximate

arbitrary distributions

with arbitrary precision.

Effective fitting tools

are available.

Acyclic Phase Type Distributions – APD

Absorption time distribution in an acyclic CT Markov Chain.

Topologically dense:

Can approximate

arbitrary distributions

with arbitrary precision.

Effective fitting tools

are available.

Closed under maximum, minimum.

Acyclic Phase Type Distributions – APD

Absorption time distribution in an acyclic CT Markov Chain.

Topologically dense:

Can approximate

arbitrary distributions

with arbitrary precision.

Effective fitting tools

are available.

Closed under maximum, minimum, and convolution.

Absorption time distribution in an acyclic CT Markov Chain.

Topologically dense:

Can approximate

arbitrary distributions

with arbitrary precision.

Effective fitting tools

are available.

Closed under maximum, minimum, and convolution.

Operations on APD

Operations on APD

Absorption time distribution in an acyclic CT Markov Chain.

Topologically dense:

Can approximate

arbitrary distributions

with arbitrary precision.

Effective fitting tools

are available.

Closed under maximum, minimum, and convolution.

Absorption time distribution in an acyclic CT Markov Chain.

Topologically dense:

Can approximate

arbitrary distributions

with arbitrary precision.

Effective fitting tools

are available.

Closed under maximum, minimum, and convolution.

Operations on APD

Absorption time distribution in an acyclic CT Markov Chain.

Topologically dense:

Can approximate

arbitrary distributions

with arbitrary precision.

Effective fitting tools

are available.

Closed under maximum, minimum, and convolution.

Operations on APD

Making

Composition Calculus

Great Again

Dominic Zimmer
dependable systems and software

Saarland University, Saarbrücken

Digging Deeper

N

R

N× R

acyclic
allow cycles

one absorbing state

multiple absorbing states

Digging Deeper

N

R

N× R

acyclic
allow cycles

one absorbing state

multiple absorbing statesmultiple absorbing states

There are two ways out of the Hospital

good

bad

admission

4

4

1

2

5

7

1

2

1

5

1

2

4

There are two ways out of the Hospital [2, 1]

good

bad

admission

4

4

1

2

5

7

1

2

1

5

1

2

4

fbad ,1 =
1

5
· 5
7
· Exp(4) ∗ · · · ∗ Exp(2)

fbad ,2 =
1

5
· 2
7
· 4
6
· Exp(4) ∗ · · · ∗ Exp(6)

fbad ,3 =
4

5
· 1
8
· 2
7
· Exp(4) ∗ · · · ∗ Exp(7)

fbad = fbad ,1 + fbad ,2 + fbad ,3

System described by f =
(
fbad fgood

)
.

Multi-Exit Acyclic Phase-Type

The Q-matrix

Q =

(
A L
0 0

)

where A ∈ R8×8 and L ∈ R8×2

In particular, for some initial probability α ∈ R8

f =
(
fbad fgood

)
= αeAtL

There are two ways out of the Hospital

good

bad

admission

4

4

1

2

5

7

1

2

1

5

1

2

4

(A | L) =




−4 4
−5 1 4

−7 5 2
−2 2

−6 2 4
−8 1 7

−6 5 1
−1 1




=
(
A | L⃗good L⃗bad

)

f =
(
fbad fgood

)
= αeAtL

=
(
αeAt L⃗bad αeAt L⃗good

)

Stochastics

fgood(t) = P (X = t ∩ Abs = good)

P(Abs = good) =

∫

R
P (X = t ∩ Abs = good) dt

= α(−A)−1L⃗good

Digging Even Deeper

N

R

N× R

acyclic
allow cycles

one absorbing state

multiple absorbing statesmultiple absorbing states

Digging Even Deeper

N

R

N× R

acyclic
allow cycles

one absorbing state

multiple absorbing statesmultiple absorbing states

multiple entry states

Multiple Entries and Exits

1

2

1

2
5

2 1

2

f1→1 =
1

3
Exp(2) ∗ Exp(3)

f1→2 =
2

3
Exp(2) ∗ Exp(3)

f2→1 = 0

f2→2 = Exp(5)

▶ At 11 , behave like the Mexit
(
f1→1 f1→2

)

▶ At 22 , behave like the Mexit
(
f2→1 f2→2

)

Multiple Entries and Exits

1

2

1

2
5

2 1

2

f1→1 =
1

3
Exp(2) ∗ Exp(3)

f1→2 =
2

3
Exp(2) ∗ Exp(3)

f2→1 = 0

f2→2 = Exp(5)

▶ At 11 , behave like the Mexit
(
f1→1 f1→2

)

▶ At 22 , behave like the Mexit
(
f2→1 f2→2

)

Multiple Entries and Exits

1

2

1

2
5

2 1

2

f1→1 =
1

3
Exp(2) ∗ Exp(3)

f1→2 =
2

3
Exp(2) ∗ Exp(3)

f2→1 = 0

f2→2 = Exp(5)

▶ At 11 , behave like the Mexit
(
f1→1 f1→2

)

▶ At 22 , behave like the Mexit
(
f2→1 f2→2

)

Multiple Entries and Exits

1

2

1

2
5

2 1

2

f1→1 =
1

3
Exp(2) ∗ Exp(3)

f1→2 =
2

3
Exp(2) ∗ Exp(3)

f2→1 = 0

f2→2 = Exp(5)

▶ At 11 , behave like the Mexit
(
f1→1 f1→2

)

▶ At 22 , behave like the Mexit
(
f2→1 f2→2

)

Multiple Entries and Exits

1

2

1

2
5

2 1

2

f1→1 =
1

3
Exp(2) ∗ Exp(3)

f1→2 =
2

3
Exp(2) ∗ Exp(3)

f2→1 = 0

f2→2 = Exp(5)

▶ At 11 , behave like the Mexit
(
f1→1 f1→2

)

▶ At 22 , behave like the Mexit
(
f2→1 f2→2

)

Multiple Entries and Exits

1

2

1

2
5

2 1

2

f1→1 =
1

3
Exp(2) ∗ Exp(3)

f1→2 =
2

3
Exp(2) ∗ Exp(3)

f2→1 = 0

f2→2 = Exp(5)

▶ At 11 , behave like the Mexit
(
f1→1 f1→2

)

▶ At 22 , behave like the Mexit
(
f2→1 f2→2

)

Multiple Entries and Exits

1

2

1

2
5

2 1

2

f1→1 =
1

3
Exp(2) ∗ Exp(3)

f1→2 =
2

3
Exp(2) ∗ Exp(3)

f2→1 = 0

f2→2 = Exp(5)

▶ At 11 , behave like the Mexit
(
f1→1 f1→2

)

▶ At 22 , behave like the Mexit
(
f2→1 f2→2

)

Multiple Entries and Exits

1

2

1

2
5

2 1

2

f1→1 =
1

3
Exp(2) ∗ Exp(3)

f1→2 =
2

3
Exp(2) ∗ Exp(3)

f2→1 = 0

f2→2 = Exp(5)

▶ At 11 , behave like the Mexit
(
f1→1 f1→2

)

▶ At 22 , behave like the Mexit
(
f2→1 f2→2

)

Multiple Entries and Exits

1

2

1

2
5

2 1

2

f1→1 =
1

3
Exp(2) ∗ Exp(3)

f1→2 =
2

3
Exp(2) ∗ Exp(3)

f2→1 = 0

f2→2 = Exp(5)

▶ At 11 , behave like the Mexit
(
f1→1 f1→2

)

▶ At 22 , behave like the Mexit
(
f2→1 f2→2

)

Multiple Entries and Exits

1

2

1

2
5

2 1

2

f1→1 =
1

3
Exp(2) ∗ Exp(3)

f1→2 =
2

3
Exp(2) ∗ Exp(3)

f2→1 = 0

f2→2 = Exp(5)

▶ At 11 , behave like the Mexit
(
f1→1 f1→2

)
= f1→•

▶ At 22 , behave like the Mexit
(
f2→1 f2→2

)
= f2→•

Multiple Entries and Exits

1

2

1

2
5

2 1

2
F =

(
f1→•
f2→•

)
=

(
f1→1 f1→2

f2→1 f2→2

)

(F)ij = P (X = t,A = j | S = i)

Given a probability distribution α over { 11 , 22 }

α =
(
P(Start = 11) P(Start = 22)

)

we can compute the Mexit F at α by αF .

Example

1

2

1

2
5

2 1

2

With α =
(
1
3

2
3

)
, we get

α · F =
1

3
f1→• +

2

3
f2→• =

(
1
3 f1→1 +

2
3 f2→1

1
3 f1→2 +

2
3 f2→2

)

=
(
1
9Exp(2) ∗ Exp(3) 2

9Exp(2) ∗ Exp(3) + 2
3Exp(5)

)

Multiple Multi-Exit Multi-Entry

F

1

2

1

2
5

2 1

2

F

1

2

1

2
5

2 1

2

Multiple Multi-Exit Multi-Entry

F

1

2

1

2
5

2 1

2

F

1

2

1

2
5

2 1

2

Multiple Multi-Exit Multi-Entry

F

1

2

1

2
5

2 1

2

F

1

2

1

2
5

2 1

2

Multiple Multi-Exit Multi-Entry

F

1

2

1

2
5

2 1

2

F

1

2

1

2
5

2 1

2

Composition

F

1

2

1

2
5

2 1

2

F

1

2

1

2
5

2 1

2

(F ◦ F)1→2 =

f1→1 ◦ f1→2 + f2→1 ◦ f2→2

=
2∑

k=1

f1→k ◦ fk→2

Composition

F

1

2

1

2
5

2 1

2

F

1

2

1

2
5

2 1

2

(F ◦ F)1→2 = f1→1 ◦ f1→2 +

f2→1 ◦ f2→2

=
2∑

k=1

f1→k ◦ fk→2

Composition

F

1

2

1

2
5

2 1

2

F

1

2

1

2
5

2 1

2

(F ◦ F)1→2 = f1→1 ◦ f1→2 + f2→1 ◦ f2→2

=
2∑

k=1

f1→k ◦ fk→2

Composition

F

1

2

1

2
5

2 1

2

F

1

2

1

2
5

2 1

2

(F ◦ F)1→2 = f1→1 ◦ f1→2 + f2→1 ◦ f2→2

=
2∑

k=1

f1→k ◦ fk→2

Composition Abstractly

1

2

1

2
5

2 1

2

1

2

1

2
5

2 1

2

Composition Abstractly

1

2

1

2
5

2 1

2

1

2

1

2
5

2 1

2F F◦

Composition Abstractly

1

2

1

2
5

2 1

2

1

2

1

2
5

2 1

2F F

Composition Abstractly

1

2

1

2
5

2 1

2

1

2

1

2
5

2 1

2F F

F ◦ F

Composition Abstractly

1

2

1

2
5

2 1

2

1

2

1

2
5

2 1

2

F

F

◦

Composition Abstractly

1

2

1

2
5

2 1

2

1

2

1

2
5

2 1

2

F

F

Composition Abstractly

1

2

1

2
5

2 1

2

1

2

1

2
5

2 1

2

F

F

3

0

Composition Calculus [4, 3]

1

2

1

2
5

2 1

2

1

2

1

2
5

2 1

2

3

0

F

F

3

0

Id

Id

Composition Calculus [4, 3]

1

2

1

2
5

2 1

2

1

2

1

2
5

2 1

2

3

0

F

F

3

0

Id

Id

◦

⊗

⊗

Composition Calculus [4, 3]

1

2

1

2
5

2 1

2

1

2

1

2
5

2 1

2

3

0

F

F

3

0

Id

Id

◦

⊗

⊗

(F ⊗ Id) ◦ (Id ⊗ F)

Composition Calculus [4, 3]

1

2

1

2
5

2 1

2

1

2

1

2
5

2 1

2

3

0

F

F

3

0

Id

Id

◦

⊗

⊗
(
F11 F12
F21 F22

)

(
δ
)

(
F11 F12
F21 F22

)

(
δ
)

(F ⊗ Id) ◦ (Id ⊗ F)

Composition Calculus

(A⊗ B) :=

(
A

B

)

(F ⊗ Id) ◦ (Id ⊗ F)

=




F1→1 F1→2

F2→1 F2→2

δ


 ◦




δ
F1→1 F1→2

F2→1 F2→2




=



F1→1 F1→1 ◦ F1→2 F1→2 ◦ F1→2

F2→1 F1→1 ◦ F2→2 F1→2 ◦ F2→2

F2→1 F2→2




Composition Calculus

(A⊗ B) :=

(
A

B

)

(F ⊗ Id) ◦ (Id ⊗ F)

=




F1→1 F1→2

F2→1 F2→2

δ


 ◦




δ
F1→1 F1→2

F2→1 F2→2




=



F1→1 F1→1 ◦ F1→2 F1→2 ◦ F1→2

F2→1 F1→1 ◦ F2→2 F1→2 ◦ F2→2

F2→1 F2→2




Composition Calculus

(A⊗ B) :=

(
A

B

)

(F ⊗ Id) ◦ (Id ⊗ F) =




F1→1 F1→2

F2→1 F2→2

δ


 ◦




δ
F1→1 F1→2

F2→1 F2→2




=



F1→1 F1→1 ◦ F1→2 F1→2 ◦ F1→2

F2→1 F1→1 ◦ F2→2 F1→2 ◦ F2→2

F2→1 F2→2




Composition Calculus

(A⊗ B) :=

(
A

B

)

(F ⊗ Id) ◦ (Id ⊗ F) =




F1→1 F1→2

F2→1 F2→2

δ


 ◦




δ
F1→1 F1→2

F2→1 F2→2




=



F1→1 F1→1 ◦ F1→2 F1→2 ◦ F1→2

F2→1 F1→1 ◦ F2→2 F1→2 ◦ F2→2

F2→1 F2→2




Arbitrary Composition

c

b

a

F

d

d

c

a

G

b

Arbitrary Composition

c

b

a

F

d

d

c

a

G

b

Arbitrary Composition

d

b

F

d

G

b

Arbitrary Composition

d

b

F

d

G

b

Arbitrary Composition

d

b

F

d

G

b

F ◦L G = (F ⊗ Id) ◦ Π(1423) ◦ (G ⊗ Id)

Arbitrary Composition

d

b

F

d

G

b

F ◦L G = (F ⊗ Id) ◦




δ
δ

δ
δ


 ◦ (G ⊗ Id)

Case Study

Figure: How incredibly good we are compared to the literature

Case Study

Figure: How incredibly good we are compared to the literature

Overview

▶ Composition: f ◦ g
Glueing horizontally

▶ Product: f ⊗ g

Glueing vertically

▶ Permutation: Πσ

Reordering inputs/outputs

The General Framework

▶ Have a set of things S with +, ∗, 0 and 1

▶ Composable boxes represented by m × n matrices

⇝ The category PROP over the ring (S ,+, ∗, 0, 1)

Categorical Notation (String Diagrams) [5]

Categorical Notation (String Diagrams) [5]

Categorical Notation (String Diagrams) [5]

Categorical Notation (String Diagrams) [5]

3 2

Categorical Notation (String Diagrams) [5]

◦

3 2

Categorical Notation (String Diagrams) [5]

◦

◦3 2 2 4

Categorical Notation (String Diagrams) [5]

◦

◦3 2 2 4

Categorical Notation (String Diagrams) [5]

◦3 2 2 4

Categorical Notation (String Diagrams) [5]

3 4

Categorical Notation (String Diagrams) [5]

⊗

3 4

2 1

Categorical Notation (String Diagrams) [5]

⊗

3 4

2 1

⊗

Categorical Notation (String Diagrams) [5]

5 5

Take-Away

▶ Modelling stochastic systems in continuous time?
▶ Consider using APDs

▶ Compositional Calculus can be made great!

▶ Monoidal Categories are not so scary
▶ PROPs Make composition very easy
▶ Heavy-lifting happens under the hood

The future

N

R

N× R

acyclic
allow cycles

one absorbing state

multiple absorbing statesmultiple absorbing states

multiple entry states

References
[1] Sally McClean et al. “A modeling framework that combines markov models and

discrete-event simulation for stroke patient care”. In: ACM Transactions on Modeling and
Computer Simulation (TOMACS) 21.4 (2011). Publisher: ACM New York, NY, USA,
pp. 1–26. doi: https://dl.acm.org/doi/10.1145/2000494.2000498.

[2] Sally McClean et al. “Using mixed phase-type distributions to model patient pathways”.
In: 2010 IEEE 23rd International Symposium on Computer-Based Medical Systems
(CBMS). 2010, pp. 172–177. doi: 10.1109/CBMS.2010.6042636.

[3] Kazuki Watanabe et al. “Compositional Probabilistic Model Checking with String
Diagrams of MDPs”. In: Computer Aided Verification. Ed. by Constantin Enea and
Akash Lal. Cham: Springer Nature Switzerland, 2023, pp. 40–61. isbn:
978-3-031-37709-9.

[4] Kazuki Watanabe et al. “Pareto Curves for Compositionally Model Checking String
Diagrams of MDPs”. In: Tools and Algorithms for the Construction and Analysis of
Systems. Ed. by Bernd Finkbeiner and Laura Kovács. Cham: Springer Nature Switzerland,
2024, pp. 279–298. isbn: 978-3-031-57249-4.

[5] Wikipedia. String diagram — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/index.php?title=String%20diagram#Extension_to_2-

categories. [Online; accessed 20-June-2025]. 2025.

