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Stochastic models

Estimate throughput of manufacturing systems.

Locate bottlenecks in communication systems.

Assess dependability of satellite systems.

Calculate performance of cloud infrastructures. 

Plan attacks on cryptoconcurrencies. 

And many other things.

What are they good for?



Stochastic models

bubbles 

arrows

Their ingredients?
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labels

of bubbles

of arrows
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bubbles: states

arrows: transitions



Customers arrive at a certain frequency, 

say approximately 1 customer per five minutes.

Service requires, say, three minutes.

At most six customers can wait at the counter.

At the pool bar of Mitsis Royal Mare
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arrival rate  = 1/5 min

service rate   = 1/3 min



What is this? 

10





2





4





3





5





6







A stochastic process 

More precise: A Markov chain

Again more precise:  A finite homogeneous

continuous-time Markov chain



The gambler rolls a die 

every minute.

She comes back once 

the die shows 6.

When will she be back? 

At the door of a gambler

When will she be back, under the assumption that 

she is not back after 10 minutes? 



Is the gambler still absent?
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And what if the gambler is still 

gambling at time t =10 ?
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Probabilities remain unchanged

The die has no memory!
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Relation to Markov chains

homegambling

5/6
1/6

This Markov chain describes the gambler’s behaviour.

Markov chains have no memory 

of the time spent in their states. They are memoryless.

Btw:

The above Markov Chain runs in discrete time.
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Continuous time, no memory

Stochastic models are usually developed in 
continuous time.

𝑃 𝑋 > 𝑡 = 𝑒−𝜈𝑡
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Continuous-time Markov chains 

Automata.

All durations

exponentially distributed.

Sojourn times in states 

memoryless.

Very well investigated 

class of stochastic 

processes.

Widely used out there.

Best guess, if only 

mean values are 

known.

Efficient and 

numerically stable

algorithms available.



Continuous time, but memory

and many, many others.

Actually:  Absence of memory is rare, though natural.

But:            It makes life simpler. (Here: modelling and analysis).

And:          Bitcoin mining is memoryless.

Stoichiometry is memoryless.

…



Memoryless Distributions Unleashed

Absorption time distribution in an acyclic CT Markov Chain. 
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There are two ways out of the Hospital

good
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admission
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There are two ways out of the Hospital [2, 1]

good

bad

admission

4

4

1

2

5

7

1

2

1

5

1

2

4

fbad ,1 =
1

5
· 5
7
· Exp(4) ∗ · · · ∗ Exp(2)

fbad ,2 =
1

5
· 2
7
· 4
6
· Exp(4) ∗ · · · ∗ Exp(6)

fbad ,3 =
4

5
· 1
8
· 2
7
· Exp(4) ∗ · · · ∗ Exp(7)

fbad = fbad ,1 + fbad ,2 + fbad ,3

System described by f =
(
fbad fgood

)
.



Multi-Exit Acyclic Phase-Type

The Q-matrix

Q =

(
A L
0 0

)

where A ∈ R8×8 and L ∈ R8×2

In particular, for some initial probability α ∈ R8

f =
(
fbad fgood

)
= αeAtL



There are two ways out of the Hospital

good

bad

admission

4

4

1

2

5

7

1

2

1

5

1

2

4

(A | L) =




−4 4
−5 1 4

−7 5 2
−2 2

−6 2 4
−8 1 7

−6 5 1
−1 1




=
(
A | L⃗good L⃗bad

)

f =
(
fbad fgood

)
= αeAtL

=
(
αeAt L⃗bad αeAt L⃗good

)



Stochastics

fgood(t) = P (X = t ∩ Abs = good)

P(Abs = good) =

∫

R
P (X = t ∩ Abs = good) dt

= α(−A)−1L⃗good
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Digging Even Deeper

N

R

N× R

acyclic
allow cycles

one absorbing state

multiple absorbing statesmultiple absorbing states

multiple entry states



Multiple Entries and Exits
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Multiple Entries and Exits
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f1→1 =
1

3
Exp(2) ∗ Exp(3)

f1→2 =
2

3
Exp(2) ∗ Exp(3)

f2→1 = 0

f2→2 = Exp(5)

▶ At 11 , behave like the Mexit
(
f1→1 f1→2

)
= f1→•

▶ At 22 , behave like the Mexit
(
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Multiple Entries and Exits

1

2

1

2
5

2 1

2
F =

(
f1→•
f2→•

)
=

(
f1→1 f1→2

f2→1 f2→2

)

(F )ij = P (X = t,A = j | S = i)

Given a probability distribution α over { 11 , 22 }

α =
(
P(Start = 11 ) P(Start = 22 )

)

we can compute the Mexit F at α by αF .



Example

1

2

1

2
5

2 1

2

With α =
(
1
3

2
3

)
, we get

α · F =
1

3
f1→• +

2

3
f2→• =

(
1
3 f1→1 +

2
3 f2→1

1
3 f1→2 +

2
3 f2→2

)

=
(
1
9Exp(2) ∗ Exp(3) 2

9Exp(2) ∗ Exp(3) + 2
3Exp(5)

)
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Composition
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Composition Calculus
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Overview

▶ Composition: f ◦ g
Glueing horizontally

▶ Product: f ⊗ g

Glueing vertically

▶ Permutation: Πσ

Reordering inputs/outputs



The General Framework

▶ Have a set of things S with +, ∗, 0 and 1

▶ Composable boxes represented by m × n matrices

⇝ The category PROP over the ring (S ,+, ∗, 0, 1)
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Categorical Notation (String Diagrams) [5]
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Take-Away

▶ Modelling stochastic systems in continuous time?
▶ Consider using APDs

▶ Compositional Calculus can be made great!

▶ Monoidal Categories are not so scary
▶ PROPs Make composition very easy
▶ Heavy-lifting happens under the hood



The future

N

R

N× R

acyclic
allow cycles

one absorbing state

multiple absorbing statesmultiple absorbing states

multiple entry states
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