
Large Language Models for Service-Oriented

Computing (LLM4SOC):

Review and Research Directions

Indika Kumara, Hasan Kaplan, Joshua Owotogbe, Damian

Andrew Tamburri, and Willem-Jan van den Heuvel

The Problem and Research Goals

• Problem

• There is a considerable amount of academic and gray literature on LLMs for
SOC.

• However, there is no systematic literature review on the topic.

• Research Goals

• Review the existing work on LLM4SOC

• Develop a research agenda for LLM4SOC

[2]

Research Methodology

[3]

Of 703 papers

(search

results), 64

were selected.

Organizing Results: Extended SOA Model

[4]

Service Foundation

• Enterprise service bus (ESB) was the SOA middleware for classical Web services.

• Microservices Architecture: ESB is replaced by an API gateway, service mesh, and event bus.

• LLM-based microservices require an additional middleware: an LLM (Gen AI) gateway.

[5]

Service Foundation

• State of the Art

• A few works on LLM-based microservices and SOA middleware
capabilities, such as service recommendation and deployment
optimization.

• Research Opportunities and Challenges

• LLM Inference Resource Management

• Resource management for LLM workloads.

• Optimize resource usage and energy consumption for mixed
workloads in LLM-integrated microservice architectures.

• LLM Gateway Capabilities

• Request routing, rate control, caching, load balancing, LLM API
usage and cost monitoring, etc.

[6]

Service Foundation

• Research Opportunities and Challenges
• LLMs for Service Capabilities

• Different types of business service logic (e.g., data and API access, data
transformation, and extracting information from documents)

• LLMs for Middleware Capabilities
• Service annotation, publication, discovery, etc.
• Conversational assistants to help developers correctly use and configure

middleware platforms and tools. e.g., K8sGPT
• Trustworthy and Secure LLMs in Microservice Architectures

• Detecting and mitigating hallucinations and bias in LLM inferences
consumed by microservices

• Detecting and mitigating potential threats in the LLM-integrated
microservice architecture (LLM Gateway)

• prompt injection, model theft, model denial of service, insecure
output handling, over-reliance, and information disclosure. [7]

Service Composition

• State of the Art

• A few works on generating executable service orchestration logic (including
process models)

• An LLM-based multi-agent framework for automated service composition -
agents that can execute services/APIs or use tools

• A study on mining microservice dependency graphs from service
configuration files

• Research Opportunities and Challenges

• Composability Analysis

• Composability analysis that incorporates the information from multi-
model data such as service descriptions, policies, SLAs (service level
agreements), service usage history, and user comments on APIs.

• Composability analysis for LLM-based microservices that provide a
generic service interface that takes an NL input. [8]

Service Composition

• Research Opportunities and Challenges

• Dynamic, Adaptive, and QoS-aware Compositions

• Autonomously and on demand, decide on the service composition
plans.

• Interpreting runtime service execution errors using the domain
knowledge and taking the most appropriate actions.

• Translate QoS requirements (NL) into the optimization logic.

• Multi-agents for Service Composition

• There is no comprehensive evaluation of the scalability and
robustness of the agentic approach for composing services.

[9]

Service Composition

• Research Opportunities and Challenges

• Trustworthy and Secure LLMs in Service Composition

• Fairness issues, e.g., the popularity bias in service selection can
lead to the dominant use of popular services.

• Robustness of LLMs for hallucinations, prompt perturbations, etc.

• Security vulnerabilities in LLM's decisions, e.g., selecting an insecure
API or a deprecated API.

• Prompt injection can be used to trick LLMs into making such
decisions.

[10]

Service Management and Monitoring

• State of the Art

• Provide human-understandable insights about the health of microservices
observability data

• Anomaly detection and generation of service dependency graphs

• Process mining, including detecting anomalies in complex service workflows

• Research Opportunities and Challenges

• Observability in LLM-powered Microservice Architectures

• Creating the taxonomies of failures and errors in LLM-powered
architectures (including multi-agent based microservices).

• Accurately collecting data from diverse LLM technology stacks at a low
cost to support diagnosing such issues.

• Identifying and evaluating the potential mitigation or recovery strategies
for those issues. [11]

Service Management and Monitoring

• Research Opportunities and Challenges

• Self-* Management Capabilities

• LLMs can enable building sophisticated self-* management systems.

• Multi-domain adaptability (e.g., making management systems adaptable to
diverse microservice environments, ranging from cloud to edge).

• Natural language understanding (e.g., interpreting natural language policies
and configuration instructions, and identification of anomalies and faults using
the complex textual telemetry data from diverse system components).

• Generation and agentic capabilities (e.g., automatically generating and
sending alerts and carrying out system reconfigurations using the relevant
APIs and tools).

• Trustworthy and Secure LLMs in Service Monitoring and Management

• Errors in LLM’s interpretation of data and system configuration decisions

• Attackers can potentially compromise self-* systems to create system
misconfigurations intentionally [12]

Service Design and Development

• State of the Art
• Many works focus on applying LLMs in business process modeling.
• A few works on generating and validating test cases for microservices.
• A chatbot to answer queries from developers regarding web services in a service

marketplace.

• Research Opportunities and Challenges
• Service-based Application Design

• Domain-driven design (DDD), pattern-based design, contract/code-first approaches to
service design and implementation, etc.

• Design Maintenance (including Evolution and Migration)
• Unique design maintenance use cases:

• Substituting or replacing services in the architecture
• Changing activities and their control and data flows in process models
• Migrating from a monolithic application architecture to a microservice architecture

(and vice versa)
• Service orchestration into choreography (and vice versa)
• A containerized, resource-oriented microservice model to an event-driven serverless

model (and vice versa). [13]

Service Design and Development

• Research Opportunities and Challenges

• Implementation Artifact Generation

• Generation/repair of domain-specific artifacts such as IaC scripts,
service policies, monitoring queries (observability logic), and
microservice middleware configurations.

• Consider typical business logic in microservices (e.g., API request and
response validation, consuming and publishing events, database
access, and API access).

• Representative benchmark datasets for evaluating LLM-based
approaches in SOC design and implementation.

• Implementation Artifact Maintenance (including Evolution and Migration)

• Design and Implementation Guidelines and Assistants

• Trustworthy and Secure LLMs in Service Design and Development
[14]

Recap

• Large language models (LLMs) can significantly impact the service-oriented
competing (SOC) landscape, and hence, warrant revisiting the traditional
research challenges in SOC.

• This study systematically reviewed the literature on LLMs for SOC.

• It formulated a research roadmap (LLM4SOC research roadmap), providing
research directions for the key pillars of SOC: service foundation, service
composition, service monitoring and management, and service design and
development.

[15]

Q/A

www.jads.nl

	Slide 1
	Slide 2: The Problem and Research Goals
	Slide 3: Research Methodology
	Slide 4: Organizing Results: Extended SOA Model
	Slide 5: Service Foundation
	Slide 6: Service Foundation
	Slide 7: Service Foundation
	Slide 8: Service Composition
	Slide 9: Service Composition
	Slide 10: Service Composition
	Slide 11: Service Management and Monitoring
	Slide 12: Service Management and Monitoring
	Slide 13: Service Design and Development
	Slide 14: Service Design and Development
	Slide 15: Recap
	Slide 16:

