The Internet of Bio-Nano Things – Concepts and Realization

SummerSOC 2025, Crete, Greece June 16, 2025

> Prof. Dr. Stefan Fischer University of Lübeck

> > Germany

Overview

- Nano Robotics/Communication & the IoBNT
- The IoBNT in precision medicine
- DNA-based nanonetworks
 - Idea and concept
 - In-message computation
- Gateway Technologies
- Towards realization: wet lab and in-vivo experiments
- Medical application examples
- How far are we?

What is "nano"?

© wichlab, University of New South Wales, Australia

Definition 3 A Nanodevice $\mathcal{N}_D = (K_{mand}, K_{opt})$ is an artificial construct with an overall nanoscale size, designed to perform a predefined function in an environment Γ . It consists of mandatory components $K_{mand} = \{P\}$ and a set of zero or more optional components $K_{opt} \subseteq \{A, C, I, L, M, S, T\}$.

Nanonetworks

- A (huge) number of nanodevices/nanomachines /nanobots
- Operating in the human body
- Communicating with each other
- Fulfilling certain jobs

Integrating Nanonetworks:

The Internet of Bio-Nano Things

The Internet of Bio-Nano Things – technically

Use in Medicine: Prevention, Diagnosis, Therapy

Health Monitoring

A Scenario (a bit more realistic)

Monitoring

Regine Wendt: "The Application of Nanotechnologies in Precision Medicine" Diss. 2024

Intervention

Requirements of a Solution

- Bio-compatible
- Very small size → very little functionality → distributed system solution necessary
- Solution for construction of devices on the nano level

DNA-based Nano Networks

The Basics: DNA Tiles

- Concept: tile-based self-assembly systems invented by Eric Winfree
- DNA tiles as basic building blocks of all structures presented here
- Similar to Lego bricks
- Important difference: can be designed to only stick to very specific other tiles
- And, more importantly: they master self-assembly
 - \rightarrow no need for complex engineering on the nano level!

The Mathematical Model of a DNA Tile

- Non-rotatable blocks
- Glues on each side of different strength (here: top, down: 1, left, right: 2)
- Glues have labels
- Marker in the middle
- Simply speaking, tiles connect to other tiles when they have the same glues on neighboring sites

The Mathematical Model of a DNA Tile

... and the Biological Equivalent

- The tiles consist of four intertwined DNA strands with open ends in all cardinal directions.
- Typical size: 20 x 20 x 2 nm³
- The length of the open ends can be chosen at will and depends on the intended use case.
- Longer open ends result in stronger bindings, while shorter ends lead to smaller tiles with weaker binding strength.
- Further, the bases Cytosin and Guanin bind roughly twice as strongly as Adenine and Thymine.

DNA-tile with glues in all directions.

A more Biological Visualization

Now, what can you do with tiles?

- Biology does its job by "glueing" matching tiles together
- With the right tiles, you can do:
 - Build nanodevices (bots)
 - Compute
 - Communicate
- Let's see how this works!

Jie Chao, Yunfeng Lin, Huajie Liu, Lianhui Wang und Chunhai Fan: "DNA-based plasmonic nanostructures" · Materials Today Bd. 18, Nr. 6 (2015), S. 326–335

Computation

LIORUMAN

Logical Formulas: 4-way AND

Self-Assembly: an Example

Turing-completeness!

- We have shown that this approach is Turingcomplete – every computable function can be modelled by this technique (though there might be size restrictions).
- (Simple) Examples:
 - AND, OR
 - ADD, SUB, MULT, DIV
 - THRESHOLD (at least x)
 - AVG
 -
- The example above was a 4-way-AND (the red tiles)
- Obviously, one needs specific tile sets for specific functions – how can we obtain them?
- Later!

In-Message Computing

- Now, such structures can also be messages, especially when transported in a liquid medium.
- Actually, computing and communication can be combined into one process which we call in-message computation.
- Let's see how this can be used to let nanobots of different types exchange information,
 - thereby fulfilling a complex job even though they are rather primitive

In-message Computation

Nanoboxes

Nanoboxes, as used here in nanosensors have already been shown to work!

netTAS: a Simulator for Tile-based Selfassembly Systems

NetTAS Tileset aT	am kTam 2HAM kTHAM			
🛑 All Tiles				
A A B B B B B C C C A A A B B B C C C A A B B C B C C				
Simulation Setti	ngs	Simulation Control	Export	
forwardRate k _f 100000	bindingCost G _{mc} 17	Initialize ► RunStep ► Run	Export CSV 🕁 Export tikz Lineplot	
bondBreakingCost G _{se} 10,4 initialTilesAvailable	Sleep Time 10 Graph Granularity (s)	Image: Steps Line Plot of Max Assemblysize 65 Steps 1 petri dish view 24.992307321270946 Seconds (Alpha Phase) 1 petri dish view		
100 Minimum E 2	1 Binding Temperature τ _{min}	Refresh Images (to be automated) Hide/unhide unused	The tikz exports are bases on the following packages: tikz, pgfplots	

https://nettas.itm.uni-luebeck.de/

Tileset Generator: Construction of the Nanonetwork

- Tiles are constructed BEFORE deployment.
- We need an algorithm that designs tiles in a way that
 - they connect with those other tiles we want them to connect
 - and only those
 - and in a stable way.
- Ultimate goal:
 - A tool which takes as input the results of the simulation,
 - designs the tile types we need for the job (prevention, diagnosis, therapy),
 - creates a production plan for the necessary number of tiles to be deployed

Gateway Technologies

Slide contents have been provided by Maximilian Schäfer, FAU Erlangen-Nürnberg. Thx!

Why do we need gateways?

Automatic Detection and Treatment:

- Tumor releases biomarkers which propagate by diffusion and flow
- A gateway translates the biological signal into a macro scale signal
- Outside the body conventional communication and signal processing approaches can be applied
- **"Operator" decides** to treat the tumor and transmits a signal towards a nanodevice
- A gateway translates the macro scale signal into a signal that can be received by the nanodevice
- The nanodevice starts treatment, e.g., by releasing drug molecules

Interfacing and Gateway Concepts

Three exemplary concepts:

- Engineered device with RF and molecular interface located at the transition (can be also an implanted device!)
- Nanoscale "device" capable of receiving or transmitting RF signals
- Nanoscale "device" (e.g., nanoparticles or molecules) with readable properties

Gateway concepts/designs

Design Considerations

62	())
1	
- Olin	

• The task:

- Which type of molecule do I want to sense/release?
- What is my actual goal (e.g., information transmission, monitoring, treatment) and the resulting required sensitivity?

• The environment:

- Fixed position vs. mobile in the blood stream?
- Integrated in "larger" device?
- The components (based on the other considerations):
 - Which practical components meet the previous requirements (e.g., synthetic, natural)?
 - Which components are available and **feasible**?
 - What is a compatible macro scale signal?

Engineered device - Transition/Implanted

• Requires the bio-functionalization of the sensing/release unit

• Sensing unit:

- Capable of receiving the "molecule of interest" (e.g., a biomarker or signaling molecules released by a TX)
- Signal conversion of the received molecular signal into a macro scale signal (= producing a macro scale response)

• Release unit:

- Capable of receiving a macro scale signal
- Signal conversion of the received macro signal into a molecular signal (= producing a nano/micro scale response)

Example from practice: Bio-FET

- Field effect transistor-based biosensors are well investigated and applied for different biological sensing applications
- Capable of detecting the presence of a molecule of interest
- V₆ Signal conversion into a signal detectable on the macro scale (e.g., change in resistance)

• In a nutshell:

- Conventional FET: Charge placed on the gate using an electrode changes conductivity of gate material
- BioFET: Binding molecule dopes the graphene causing a change in measured resistance

Wet Lab and In-vivo Experiments

Wet Lab

- Goal: proof of concept
- Process:
 - Design experiment
 - Design tileset
 - Let the tiles be built by some company
 - Pour sufficiently many tiles into a Petri dish
 - Wait ... until the desired outcome occurs
- Simple example: fluorescence when certain biomarkers are present

In-vivo Experimentation

- Let's assume the technology works → the computer scientist and engineer in me is happy ☺
- But: will this also work in a living body? In other words: how about the real medical application?
- At some point, this will require in-vivo experiments with, e.g., a mouse model

Things that might not work

- DNA might be destroyed by the immune system.
- The immune system may even go berserk.
- Glueing of tiles might work much worse in reality than in simulations or Petri dish experiments.

Medical Applications

LET LET L

Juisier

.

Targeted Drug Delivery based on Localization

Targeted Drug Delivery based on Localization

Detection of very small Quantities

- With blood tests, certain threshold of substances necessary to detect an infection
- DNA networks could theoretically provide evidence if only a handful of pathogens are present:
 - even with only one single message molecule assembled
 - we can be absolutely sure that something has been detected.
- ightarrow Disease detection really really early, long before any symptoms
- Especially suitable for oncology

Detection of complex diseases

- There are diseases that "disguise" themselves as another disease where many factors have to be taken into account for a diagnosis.
- DNA networks can also do this:
 - You can query any number of parameters/values in a logical formula.
 - You can even create "smart medication" which contains drugs against all candidate diseases, and only those drugs will be released that work
- far superior to conventional laboratory tests

PCR Alternative

Covid 19 Test with PCR ...

- 1. Take a sample
- 2. prepare in such a way that potentially present virus RNA is extracted
- 3. Translate into DNA
- 4. PCR now "recognizes" specific sections of DNA (using DNA primers) and amplifies them (takes time)
- 5. Detection is then carried out by fluorescence labeling of the DNA that is now sufficiently present in the disease (5).

... and with DNA nano networks

- you could get around almost all of this with the DNA boxes.
- They "simply" open when the virus RNA has been extracted (step 2).
- The successfully formed message can then also be made to bind to fluorescence markers
- Basically, we need the boxes and steps 2 and 5

Summary and Outlook

- Nanonetworks and precision medicine are potentially excellent partners
- We are on a good way to create the necessary technologies.
- Apart from technology, other challenges remain:
 - Ethical issues
 - Regulatory affairs

Contact

University of Lübeck

E-Mail: stefan.fischer@uni-luebeck.de

Tel.: +49 152 09049207