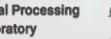
SummerSOC 2025

♀ Crete, Greece

Uncertainty-Aware Machine Learning for Astronomical Data Analysis

Gregory Tsagkatakis

Institute of Computer Science, FORTH Computer Science Department, University of Crete



Funded by the European Union

SPL at a glance

2006

4 Researchers/Academics (permanent) **1** Postdoctoral Researchers **12** Postgraduate Students 2 Research Engineers

Collaborators & Funding

Panos Tsakalides Signal Processing lab FORTH

CALCHAS

Computational Intelligence for Multi-

Source Remote Sensing Data Analytics

TITAN ARTIFICIAL INTELLIGENCE IN ASTROPHYSICS

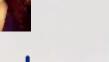
MARIE CURIE ACTIONS

European

Commission

Jean-Luc Starck **CosmoStat lab CEA**, **France**

Mahta Moghaddam MiXIL lab USC

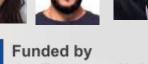


Signal Processing

cesa

NASA





Horizon 2020

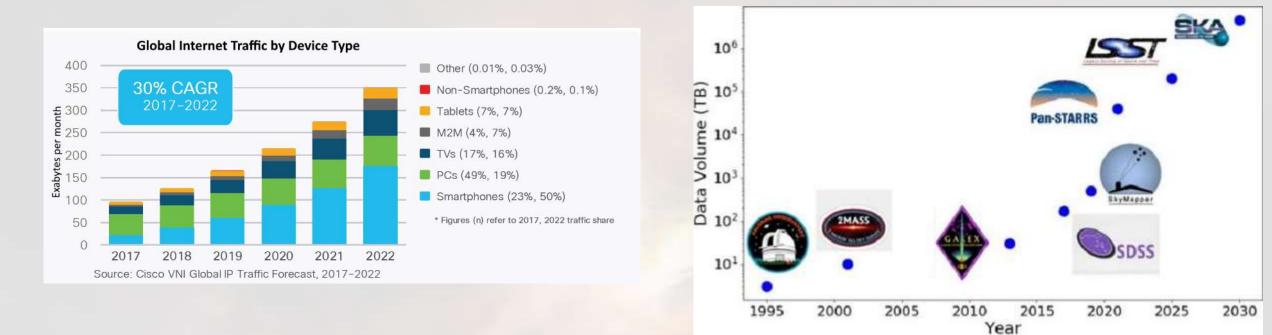
fellenic Foundation f

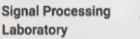
European Union funding

for Research & Innovation

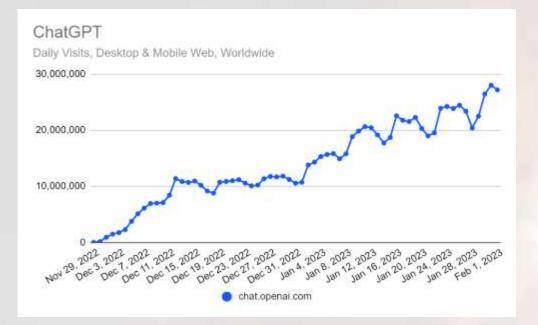
the European Union 3

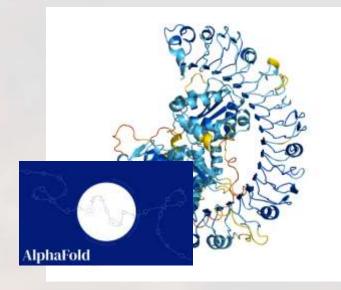
The Big Data Revolution

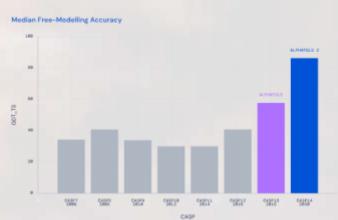




The AI Revolution





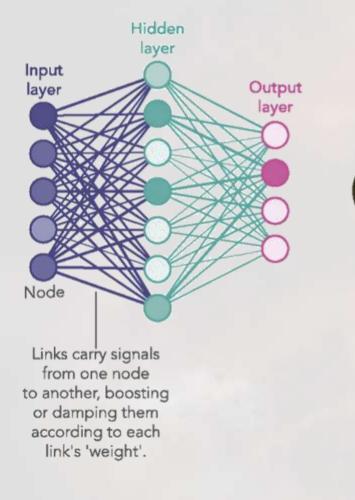


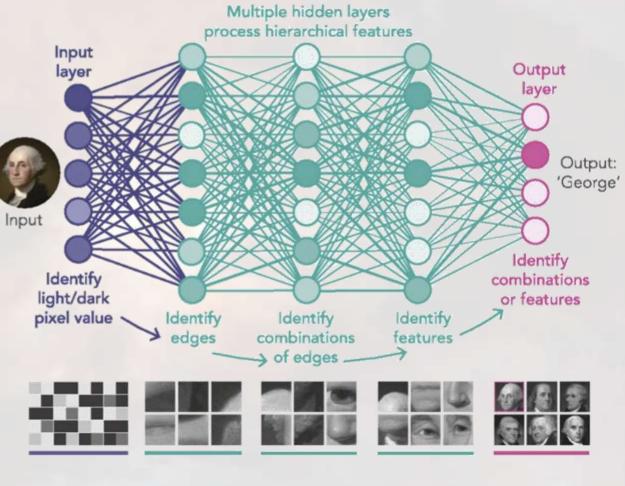
Jumper, John, et al. "Highly accurate protein structure prediction with AlphaFold." Nature. 2021.

Signal Processing

Deep Learning

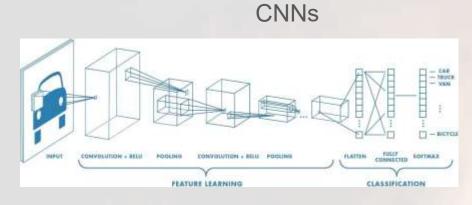
1980S-ERA NEURAL NETWORK

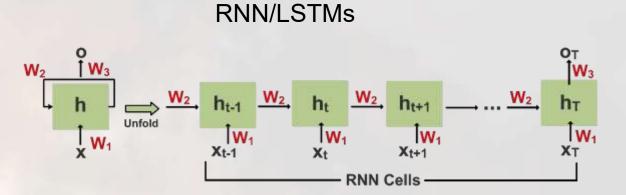


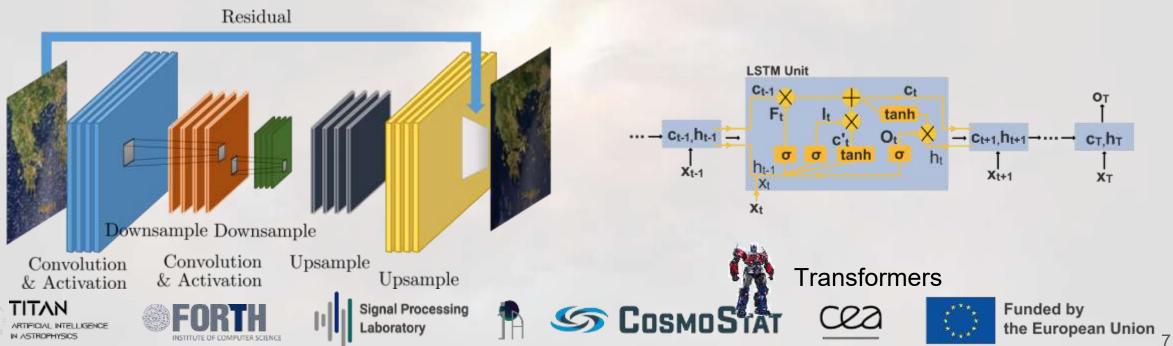


Signal Processing Laboratory

State-of-the-art in DL

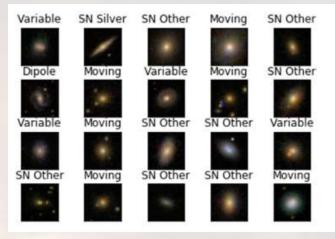






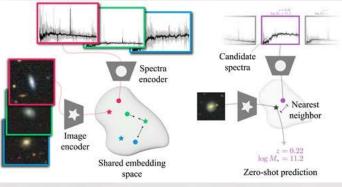
Deep Learning in Astronomy

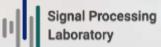




Input Image

Convolution Layer Max-pooling Fully Connected Layer





Uncertainty (model)

alaskan malamute

siberian husky

siberian husky

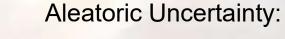
Epistemic Uncertainty:

Due to lack of knowledge about a system or process.

Can be reduced as more knowledge is gained.

Uncertainty (data)

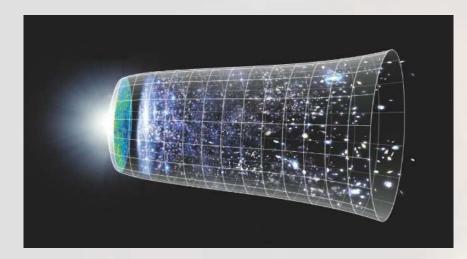
cat

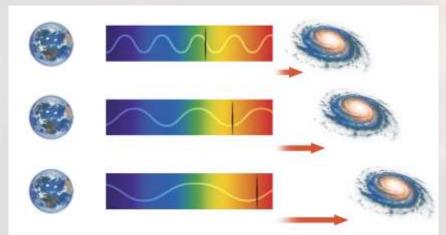


- inherent randomness in a system or process (flipping a coin
- cannot be reduced with more information or knowledge about the system.

Signal Processing Laboratory

Redshift estimation



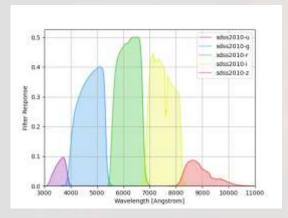


Telescopes with infrared detectors allow us to see the ancient light of the first galaxies, which has been relishifted over space and time. HUBBLE'S LIMIT THE FAST WEBB'S LIMIT THE BIO BAND

Signal Processing Laboratory

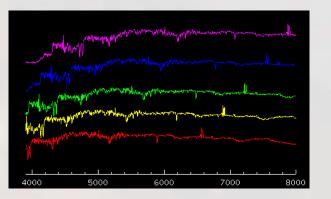
Funded by the European Union 11

Observations for Redshift estimation



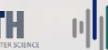
Photometric

- > 3-4 broad bands
- ➤ Cheap
- ➢ Inaccurate



Spectroscopic

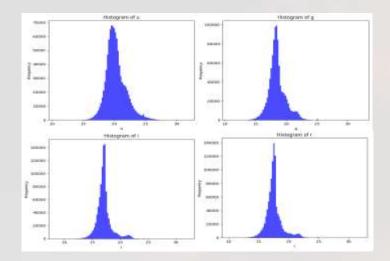
- Extended spectral range
- \succ Expensive
- Accurate

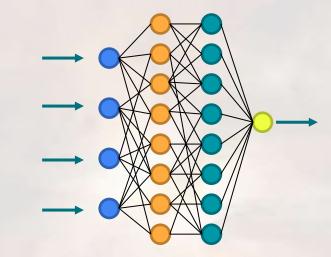


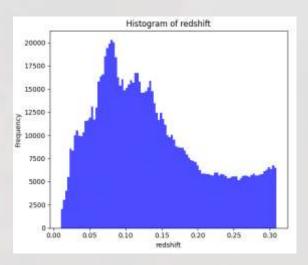
Signal Processing Laboratory

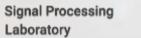


ANNs for Photometric Redshift Estimation







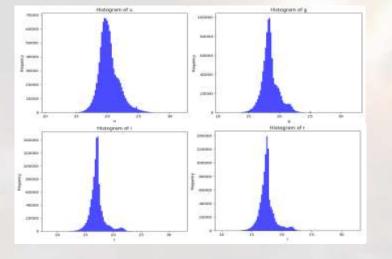


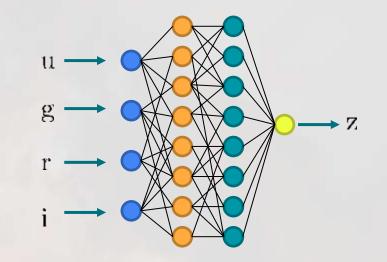
ANN - Regression

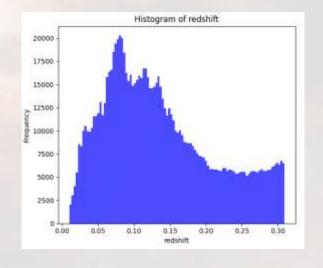
Baseline regression model $\hat{y}_i = f(x_i; \mathbf{w})$ where:

- $f(x_i; \mathbf{w})$ is the prediction for the *i*-th observation,
- y_i is the actual value for the *i*-th observation

Loss function: MSE = $\frac{1}{n} \sum_{i=1}^{n} (f(x_i; \mathbf{w}) - y_i)^2$



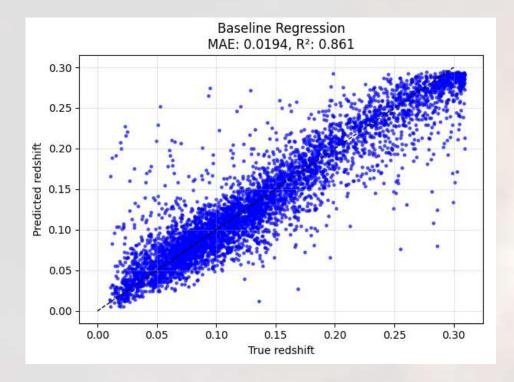


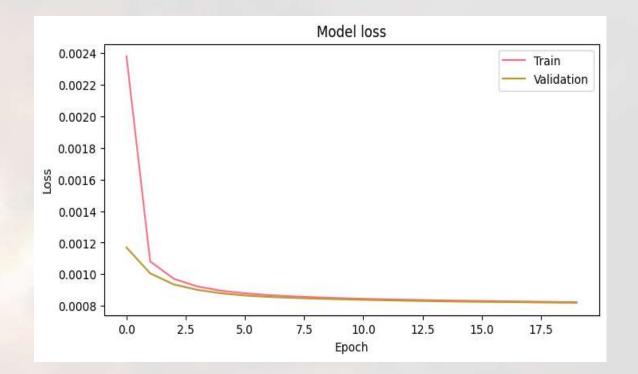


Training: 800K Testing: 200K

Signal Processing Laboratory

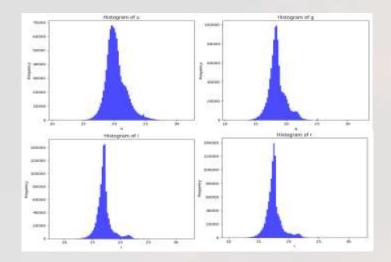
Baseline model & Data

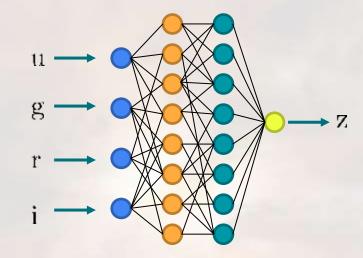


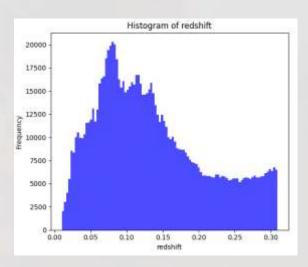


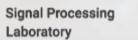
Signal Processing Laboratory

Uncertainties



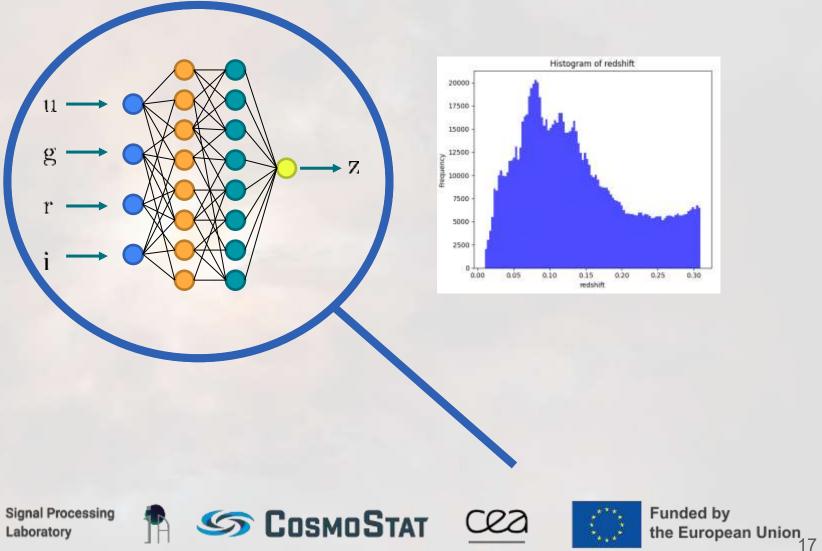






Uncertainties (model)





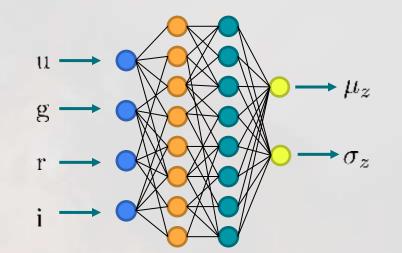
TITAN ARTIFICIAL INTELLIGENCE IN ASTROPHYSICS

Laboratory

Gaussian Regression via ANN

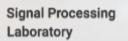
- The target variable $y_i \sim \mathcal{N}(f(x_i; \mathbf{w}), \sigma^2)$
- The likelihood for each observation is:

$$p(y_i \mid x_i, \mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - f(x_i; \mathbf{w}))^2}{2\sigma^2}\right)$$

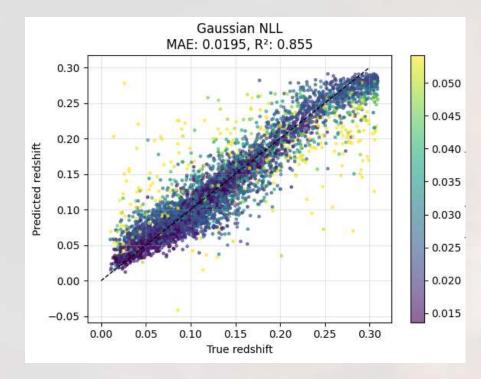


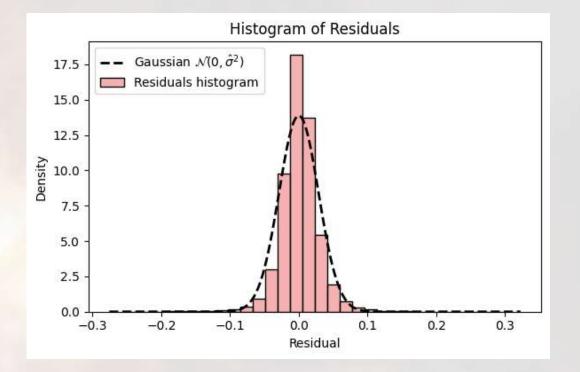
Loss: Negative Log-Likelihood (NLL) for N observations is:

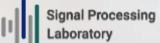
$$\mathcal{L}(\mathbf{w}) = -\sum_{i=1}^{N} \log p(y_i \mid x_i; \mathbf{w})$$
$$= \frac{N}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - f(x_i; \mathbf{w}))^2$$



Gaussian Regression via ANN



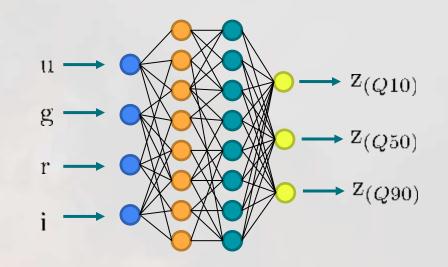


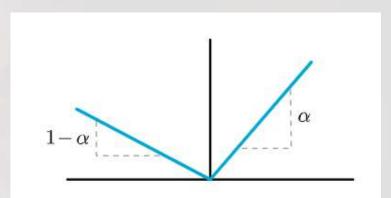


Quantile Regression

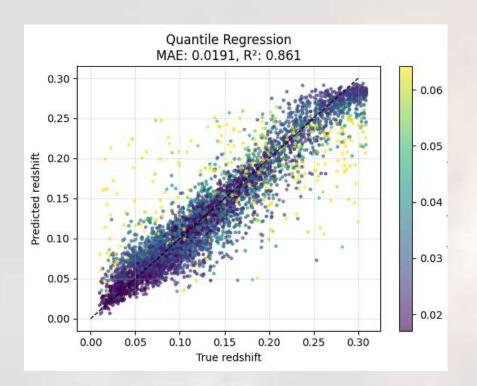
- Assume a set of target quantiles $\{\alpha_k\}_{k=1}^K$.
- $\hat{\mathbf{y}}_i = f(x_i; \mathbf{w}) = \left(\hat{y}_{i,\alpha_1}, \, \hat{y}_{i,\alpha_2}, \, \dots, \, \hat{y}_{i,\alpha_K}\right)$
- Mean pinball loss (n samples, K quantiles):

$$L_{\alpha}(y, f(x)) = \begin{cases} \alpha |y - f(x)|, & y \ge f(x), \\ (1 - \alpha) |y - f(x)|, & y < f(x). \end{cases}$$

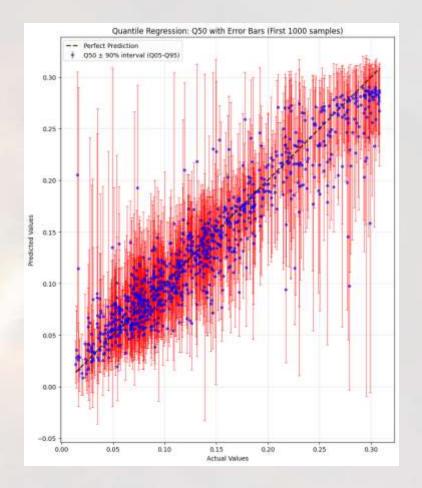




Quantile Regression



90% Coverage: 0.922 IQR [Q₀₇₅(z)-Q_{0.25}(z)]: 0.0319



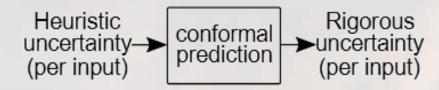
Signal Processing Laboratory

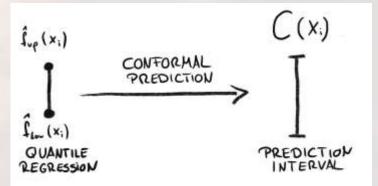
Conformal Prediction

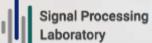
Regression task: age estimation

Model prediction: 24

MAPIE prediction interval: [20, 29] (with 90% confidence)







Conformal Prediction

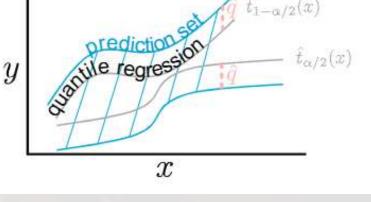
1. Split training data to proper training set and calibration

- 2. Train lower and upper-quantile regressors $\widehat{Q}^{\alpha/2}, \, \widehat{Q}^{1-\alpha/2}$
- 3. On the calibration set, compute

$$s_i^{\text{CQR}} = \max\left\{y_i^c - \widehat{Q}^{1-\alpha/2}(x_i^c), \ \widehat{Q}^{\alpha/2}(x_i^c) - y_i^c\right\}$$

4. Compute the empirical $(1 - \alpha)$ -th quantile of the scores:

$$\widehat{q}^{\text{CQR}} = \begin{cases} s^{\text{CQR}}_{\lceil (1-\alpha)(n^c+1) \rceil}, & \text{if } \alpha \geq \frac{1}{n^c+1}, \\ \infty, & \text{otherwise.} \end{cases}$$



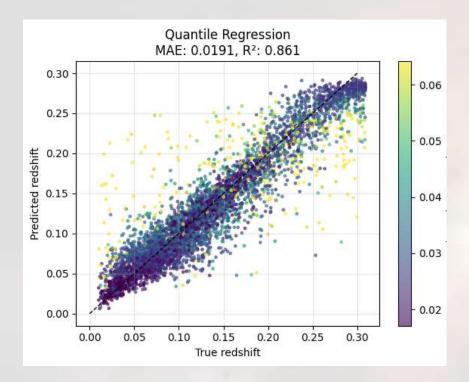
Romano, Y., Patterson, E., & Candes, E. Conformalized quantile regression. *NeurIPS 2029*.

5. Output the coverage interval:

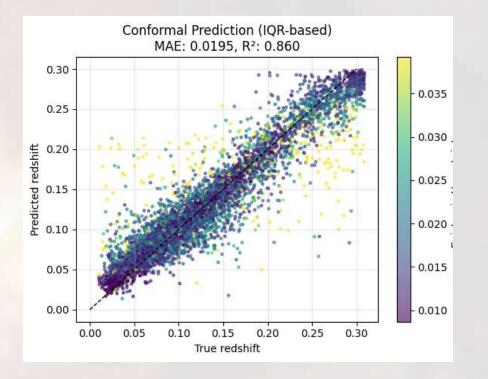
$$\mathcal{C}^{\mathrm{CQR}}(x) = \begin{bmatrix} \widehat{Q}^{\alpha/2}(x) - \widehat{q}^{\mathrm{CQR}}, \ \widehat{Q}^{1-\alpha/2}(x) + \widehat{q}^{\mathrm{CQR}} \end{bmatrix}$$

$$\overset{\text{TITAN}}{\overset{\text{ATTFCAL INTELLKEPICE}}{\overset{\text{FORTH}}{\overset{\text{ITTCAL INTELLKEPICE}}{\overset{\text{RETUCTURE OF COMPUTER SCIENCE}}} \xrightarrow{\mathrm{Formation}} \widehat{\mathbf{F}} \qquad \underbrace{\mathsf{CosmoStat}}{\overset{\text{CosmoStat}}}{\overset{\text{CosmoStat}}{\overset{\text{CosmoStat}}{\overset{\text{CosmoStat}}{\overset{\text{CosmoStat}}{\overset{\text{CosmoStat}}{\overset{\text{CosmoStat}}}{\overset{\text{CosmoStat}}{\overset{\text{CosmoStat}}{\overset{\text{CosmoStat}}{\overset{\text{CosmoStat}}{\overset{\text{CosmoStat}}}{\overset{\text{CosmoStat}}}{\overset{\text{CosmoStat}}{\overset{\text{CosmoStat}}{\overset{\text{CosmoStat}}}{\overset{\text{CosmoStat}}{\overset{\text{CosmoStat}}}{\overset{\text{CosmoStat}}{$$

Conformal Prediction



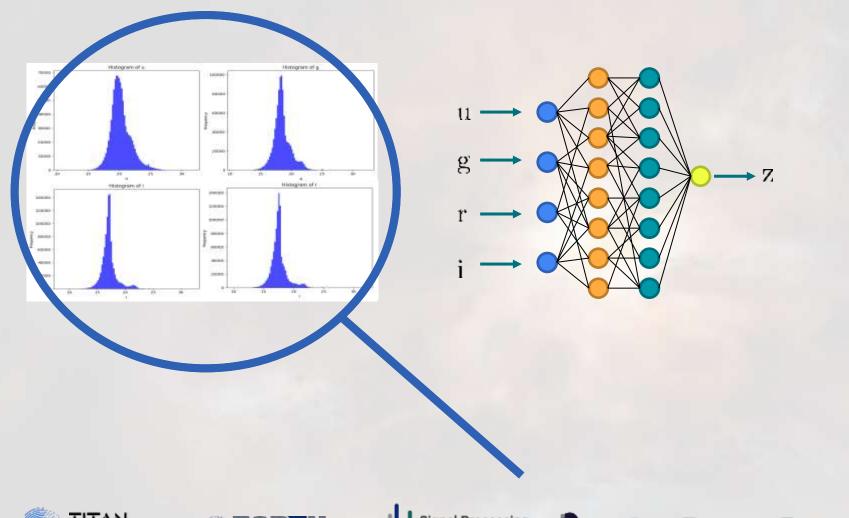
90% Coverage: 0.922 IQR: 0.0319

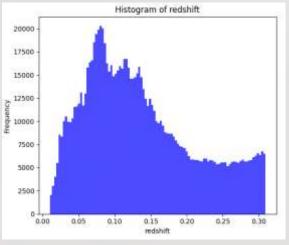


90% Coverage: 0.900 IQR: 0.0184

Signal Processing

Uncertainties (data)





Signal Processing Laboratory

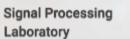


Ensembles

- Let $f^{(m)}(\cdot; \mathbf{w}^{(m)})$ be M independently trained ANN
- During inference, forward-propagate through all netw

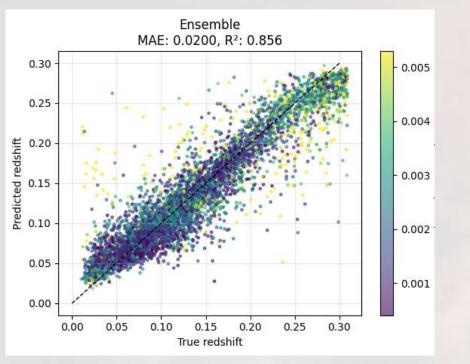
$$\mathbb{E}[y \mid x] \approx \bar{y}(x) = \frac{1}{M} \sum_{m=1}^{M} \hat{y}^{(m)}$$

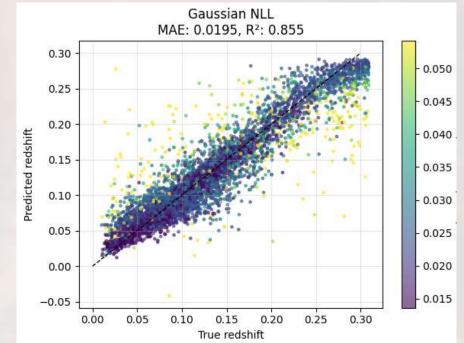
$$\operatorname{Var}[y \mid x] \approx \frac{1}{M} \sum_{m=1}^{M} (\hat{y}^{(m)})^2 - \bar{y}(x)^2$$

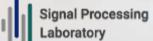


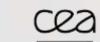
Ensemble approach

5 Models









MCDropout

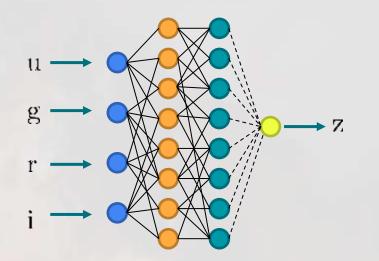
Apply *dropout* to forward pass

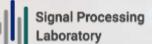
$$\hat{y}_i = f(x_i; \mathbf{w} \odot \mathbf{z}_i), \qquad \mathbf{z}_i \sim \text{Bernoulli}(p),$$

Predictive mean and variance

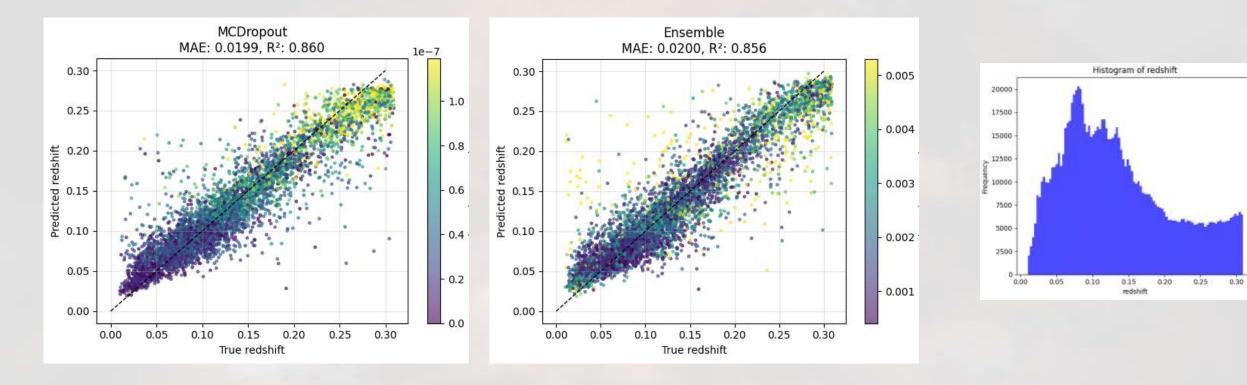
At test time keep dropout on and run S stochastic forward passes $\hat{y}^{(s)} = f(x; \mathbf{w} \odot \mathbf{z}^{(s)}), s = 1, \ldots, S$. The predictive posterior moments are approximated by

$$\mathbb{E}[y \mid x] \approx \bar{y} = \frac{1}{S} \sum_{s=1}^{S} \hat{y}^{(s)}, \quad \operatorname{Var}[y \mid x] \approx \frac{1}{S} \sum_{s=1}^{S} (\hat{y}^{(s)})^2 - \bar{y}^2 + \tau^{-1}$$



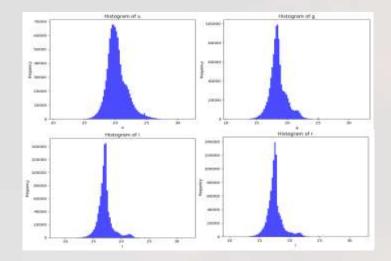


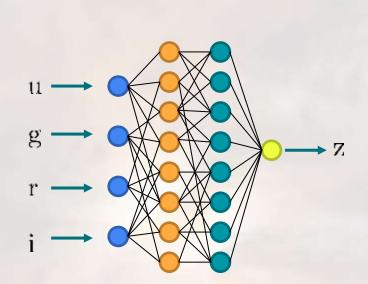
MCDropout

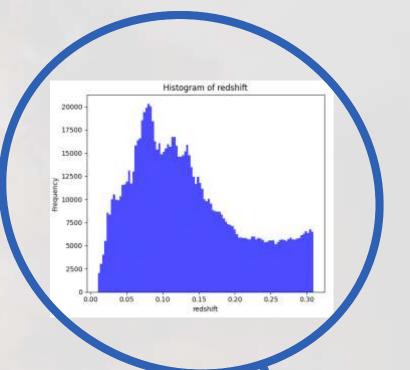


Signal Processing Laboratory

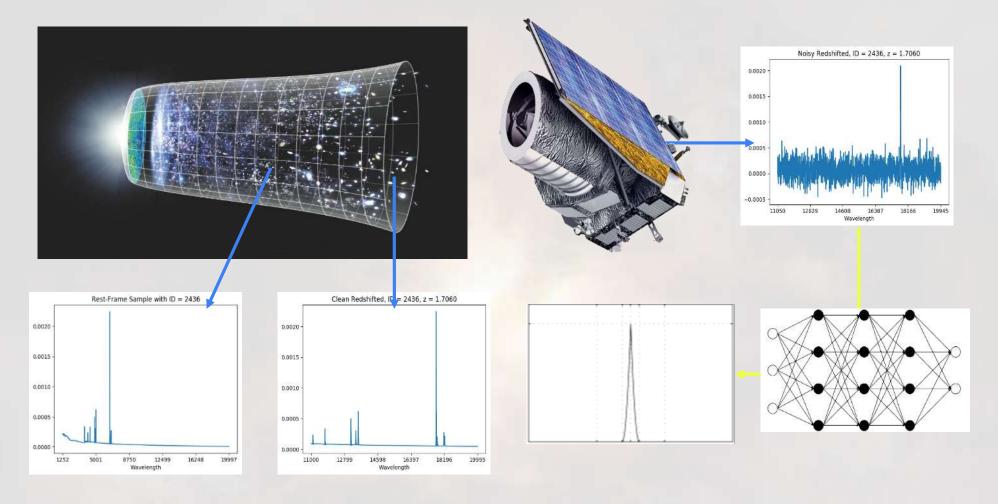
Uncertainties (labels)

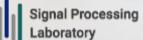






Spectroscopic Red-Shift Estimation



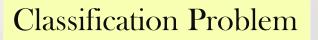


Predictive model

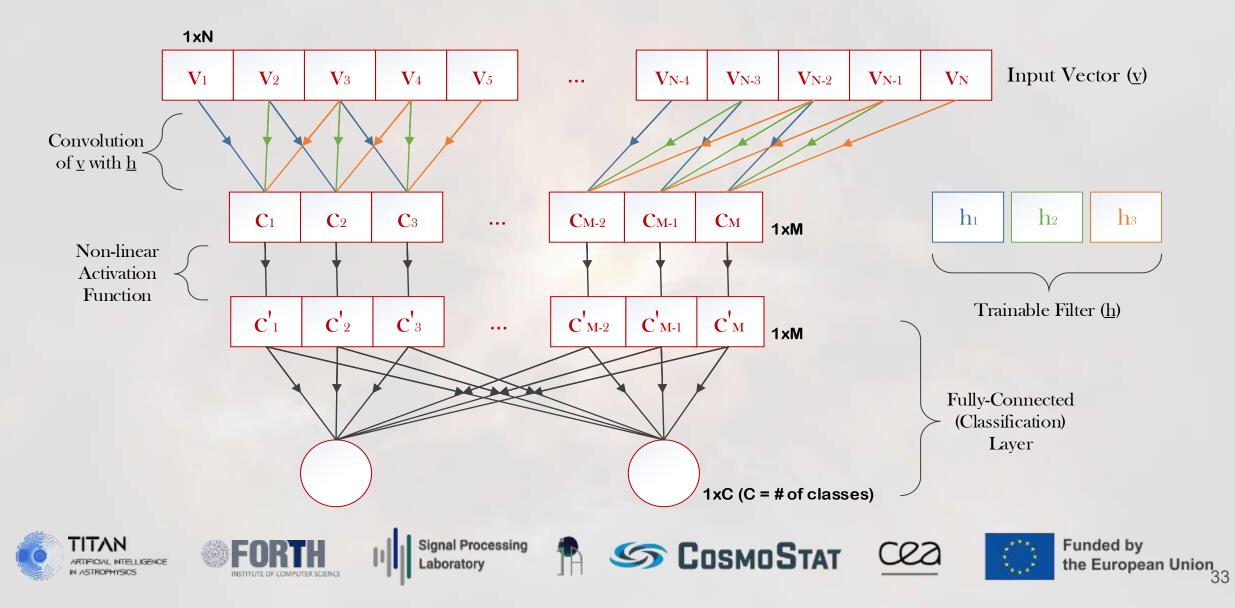
Redshift Estimation

Regression Analysis

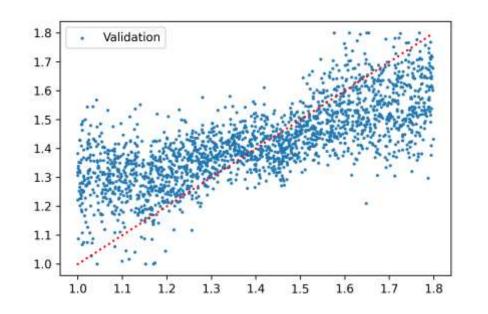
Split the examined redshift interval into ordinal classes, based on Euclid's characteristic resolution

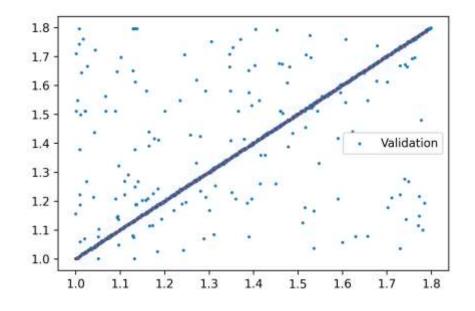


1-Dimensional CNN - Classification

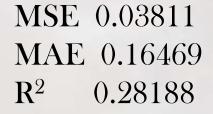


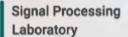
Classification (800 classes)





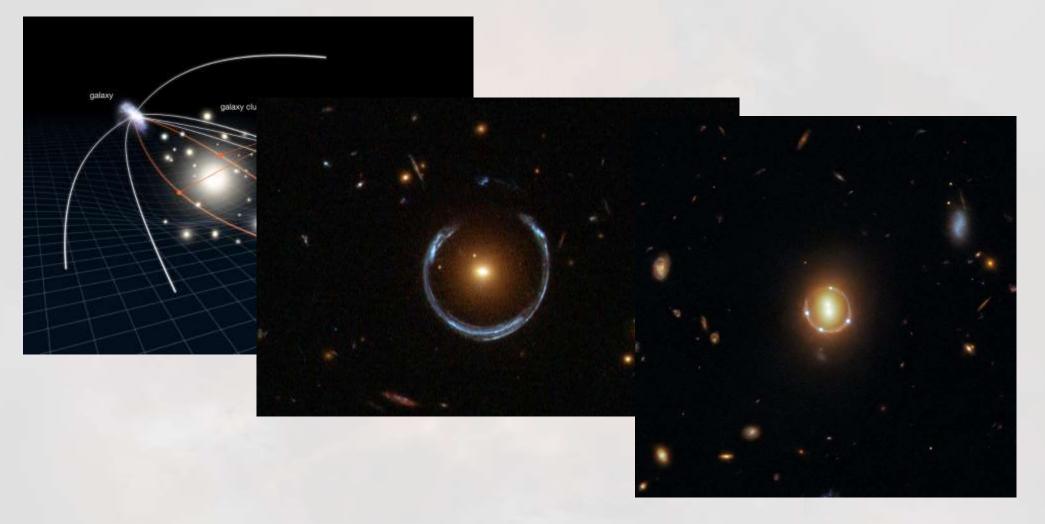
MSE0.00791MAE0.02325R²0.85082

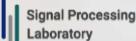




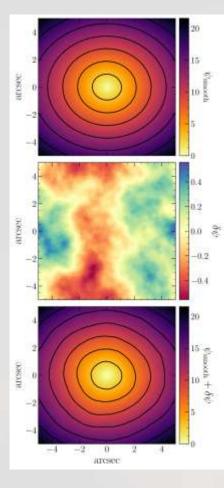
🌀 СоѕмоЅтат

Gravitational Lensing





Modeling with uncertain labels



Singular Isothermal Ellipsoid parametric model

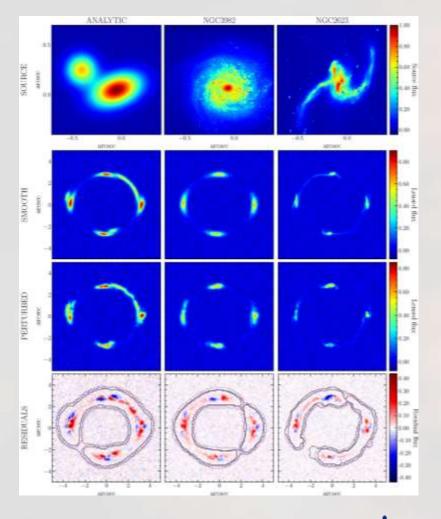
Realization of Gaussian Random Field perturbations

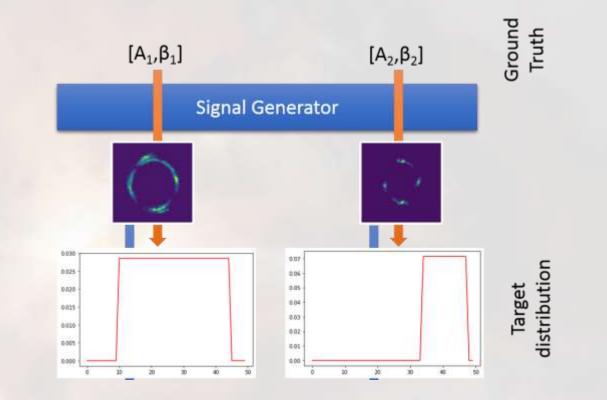
Perturbed lens potential

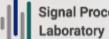
G. Vernardos, G. Tsagkatakis, and Y. Pantazis. "Quantifying the structure of strong gravitational lens potentials with uncertainty-aware deep neural networks." MNRAS. 2020.

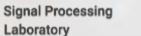
Signal Processing Laboratorv

Label uncertainty

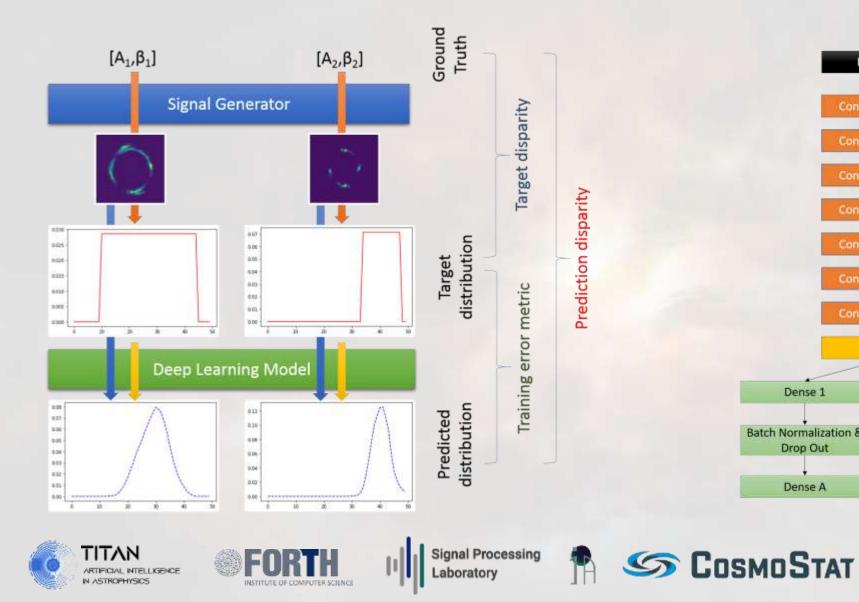








Modeling with uncertain labels



cea

Funded by the European Union 38

Modeling with uncertain labels

Given the predicted distribution P and the target distribution Q, the Jensen-Shannon divergence is defined by:

$$JS(Q, P) = \frac{1}{2}KL(P||M) + \frac{1}{2}KL(Q||M), M = \frac{1}{2}(P+Q)$$

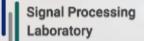
Formally, the entropy of the predicted distribution H(P) is given by:

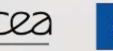
$$H(P) = -\sum_{x \in \mathcal{X}} P(x) \log(P(x)).$$

Entropy-regularized version of the JS divergence and is given by:

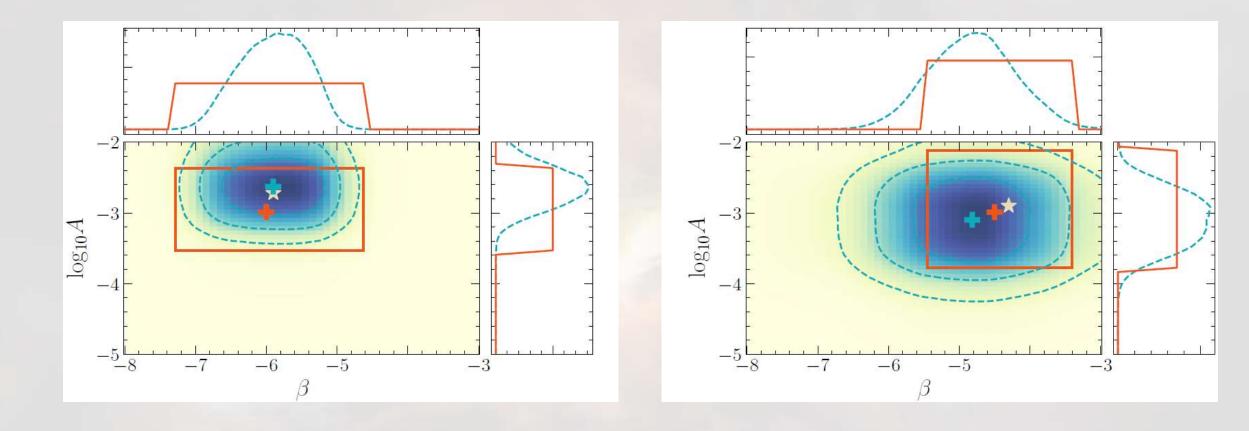
 $\mathcal{L}(P,Q) = \lambda_1 J S(P,Q) + \lambda_2 H(P),$

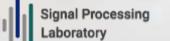
where λ_1 and λ_2 control the impact of the two terms.

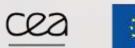




"Label-super-resolution"

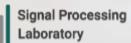






Take-home messages

- Many flavors of uncertainty (decoupling, Bayesian, ordinal regression)
- "Limited" investigation in scientific data analysis
- The case of time-domain astronomy
- The case of spatially resolved observations
- The promise of multi-modality



MINOAS - Machine Intelligence for iNverse imaging,
Observation Analysis and Sensing Workshop
Dates: 24-26 September 2025
Location: FORTH, Crete

